Biao Li, Fei Lyu, Hao Sun, Faxing Ding, Yongqiang Cai, Chaocheng Zhang. Comparative Study on Seismic Performance of Several Types of Square Section Piers at the Same Cost[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(1): 53-67. doi: 10.13206/j.gjgS23063003
Citation: Biao Li, Fei Lyu, Hao Sun, Faxing Ding, Yongqiang Cai, Chaocheng Zhang. Comparative Study on Seismic Performance of Several Types of Square Section Piers at the Same Cost[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(1): 53-67. doi: 10.13206/j.gjgS23063003

Comparative Study on Seismic Performance of Several Types of Square Section Piers at the Same Cost

doi: 10.13206/j.gjgS23063003
  • Received Date: 2023-06-30
    Available Online: 2024-03-29
  • Publish Date: 2024-01-25
  • The seismic performance of the traditional reinforced concrete pier is insufficient under strong earthquakes, but the concrete filled steel tube (CFST) pier has better seismic performance. CFST pier has broad application prospects in highway, expressway, urban expressway and high-speed railway, and has been gradually popularized in bridge structure in recent years. In order to improve the seismic toughness of bridge piers, the ultimate seismic capacity of square section reinforced concrete piers, partially filled CFST piers, CFST piers and stirrup-confined CFST piers are compared and studied. Seismic elastoplastic and plastic large deformation time history analysis of full-size finite element models of square section reinforced concrete pier, partially filled CFST pier, CFST pier and stirrup-confined CFST pier were carried out, and the seismic limit performance and application range of different types of pier were discussed. In the analysis, the finite element software ABAQUS is used to establish a refined finite element model of solid shell. In the model, a parametric deterministic concrete triaxial plastic-damage model is adopted for the concrete stress-strain relationship, and crack insertion technology is introduced. The combined hardening-ductile damage model of steel stress-strain relationship was adopted, and the finite element model was verified by the existing experimental results of the seismic performance of reinforced concrete pier, partially filled CFST pier, CFST pier and and stirrup-confined CFST pier under unidirectional pseudo-static, unidirectional pseudo-dynamic, bidirectional pseudo-dynamic, and shake table loading test. Finally, three evaluation indexes: displacement response, cumulative energy dissipation and stiffness damage, are used to evaluate the seismic toughness of various piers under different ground motion intensity at the same cost. The analysis results show that: 1) the elastic-plastic and large deformation seismic calculation methods of the refined solid-shell FE model of CFST pier can reasonably reflect the “pinch” effect of hysteretic curve under cyclic load, the degradation of bearing capacity during large plastic deformation and the displacement response under dynamic load. 2) When the bridge fortification requirement is 6-7 degrees, it is recommended to choose reinforced concrete pier; when the bridge fortification requirement is 8 degrees, it is recommended to choose CFST pier. When the bridge fortification requirement is 9 degrees or above, it is recommended to choose the stirrup-confined CFST pier.
  • [1]
    魏凯, 赵文玉, 洪杰, 等. 卷破波斜向作用下方形桥墩砰击荷载研究[J]. 工程力学, 2023, 40(5):41-48.
    [2]
    丁发兴, 许云龙, 王莉萍, 等. 钢-混凝土组合结构抗震性能研究进展[J]. 钢结构(中英文), 2023, 38(12):1-26.
    [3]
    Ge H B, Susantha K A S, Satake Y, et al.Seismic demand predictions of concrete-filled steel box columns[J]. Engineering Structures, 2003, 25(3):337-345.
    [4]
    Ge H B, Usami T. Analytical study on ultimate strength and deformation of partially concrete-filled steel beam-columns of box section[J]. Structural Engineering and Earthquake Engineering, 1995, 513(31):77-88.
    [5]
    Morishita M, Aoki T, Suzuki M. Experimental studyon the seismic resistance performance of concrete-filled steel tubular columns[J]. Journal of Structural Engineering, 2000, 46A:75-83.
    [6]
    Goto Y, Wang Q Y, Makoto O. FEM analysis for hysteretic behavior of thin-walled columns[J]. Journal of Structural Engineering, 1998, 124(11):1290-1301.
    [7]
    臧华, 刘钊, 李红英, 等. 钢管混凝土桥墩抗震性能试验研究[J]. 防灾减灾工程学报, 2010, 30(4):442-446

    , 451.
    [8]
    Yuan H H, Dang J, Aoki T. Experimental study of the seismic behavior of partially concrete-filled steel bridge piers under bidirectional dynamic loading[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(15):2197-2216.
    [9]
    孙浩, 徐庆元, 吕飞, 等. 动力荷载下钢管混凝土墩柱抗震性能极限分析[J]. 铁道学报, 2023, 45(3):97-108.
    [10]
    Ding F X, Fang C J, Bai Y, et al. Mechanical performance of stirrupconfined concrete-filled steel tubular stub columns under axial loading[J]. Journal of Constructional Steel Research, 2014, 98:146-157.
    [11]
    Ding F X, Lu D R, Bai Y, et al. Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading[J]. Thin-Walled Structures, 2016, 98:443-453.
    [12]
    丁发兴, 刘怡岑, 吕飞, 等. 拉筋接触方式对高轴压比钢管混凝土柱抗震性能影响试验研究[J]. 建筑结构学报, 2021, 42(9):62-72.
    [13]
    Luo L, Ding F X, Wang L P, et al. Plastic hinge and seismic structural measures of terminal stirrup-confined rectangular CFT columns under low-cyclic load[J/OL]. Journal of Building Engineering, 2021, 34[2021-02-09]. https://doi.org/10.1016/j.jobe.2020.101908.
    [14]
    Sun H, Ding F, Wang L P, et al. Experimental and analytical study of thin-walled stirrup-confined CFST piers under pseudo-static loading[J/OL]. Journal of Constructional Steel Research, 2023, 210[2023-08-01]. https://doi.org/10.1016/j.jcsr.2023.108047.
    [15]
    张艺欣. 冻融损伤RC柱及框架结构抗震性能研究[D]. 西安:西安建筑科技大学, 2020.
    [16]
    Kang X, Zhang M, Qin H, et al. Experimental and numerical study on the earthquake damage of spherical bearings for chinese highspeed railway bridge[J/OL]. Shock and Vibration, 2022, 2022[2022- 12-02]. https://doi.org/10.1155/2022/8304408.
    [17]
    Goto Y, Ebisawa T, Lu X L. Local buckling restraining behavior of thin-walled circular CFT columns under seismic loads[J/OL]. Journal of Structural Engineering, 2014, 140(5)[2014-06-18]. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000904.
    [18]
    丁发兴, 吴霞, 向平, 等. 多类混凝土和各向同性岩石损伤比强度准则[J]. 土木工程学报, 2021, 54(2):50-64

    , 73.
    [19]
    Ding F, Cao Z Y, Lyu F, et al. Practical design equations of the axial compressive capacity of circular CFST stub columns based on finite element model analysis incorporating constitutive models for highstrength materials[J/OL]. Case Studies in Construction Materials, 2022, 16[2022-06-22]. https://doi.org/10.1016/j.cscm.2022.e01115.
    [20]
    孙浩, 徐庆元, 丁发兴, 等. 循环荷载下钢管混凝土墩柱塑性大变形分析[J]. 铁道科学与工程学报, 2023, 20(3):973-985.
    [21]
    Johansson M, Gylltoft K. Structural behavior of slender circular steel-concrete composite columns under various means of load application[J]. Steel and Composite Structuresl, 2001, 1(4):393-410.
    [22]
    中华人民共和国交通运输部. 公路桥梁抗震设计规范:JTG/T 2231-01-2020[S]. 北京:人民交通出版社, 2020.
    [23]
    中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010.
  • Relative Articles

    [1]Mingang Tan, Junping Li, Ping Che. Fabrication and Installation Technology of Steel Truss Arch Bridge[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(8): 42-49. doi: 10.13206/j.gjgS21030101
  • Cited by

    Periodical cited type(6)

    1. 宗秀金,陈川,昌坤,师朋,钟世,王帅亮. 超高层顶模安装施工技术应用. 建筑技术开发. 2024(02): 39-41 .
    2. 陈川,宗秀金,师朋,昌坤,钟世,王帅亮. 智能顶升模架系统技术应用. 建筑技术开发. 2024(02): 94-96 .
    3. 刘玉涛,陈万里,黄苏梦,何骏炜,黄政哲. 轻量化整体液压顶升式钢平台在宁波曼哈顿大厦项目中的应用. 施工技术(中英文). 2024(14): 35-40+46 .
    4. 肖胜,蔡魁. 论连续箱梁桥多跨整体同步异距顶升施工技术. 科学技术创新. 2022(14): 103-106 .
    5. 胡春奇. 高层建筑施工关键技术探究. 建筑技术开发. 2022(21): 51-53 .
    6. 李金荣. 大跨度钢结构顶升法施工控制探讨——以福州市某综合类医院项目为例. 住宅产业. 2022(12): 74-77 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 80.9 %META: 80.9 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.5 %其他: 15.5 %Central District: 0.6 %Central District: 0.6 %China: 1.9 %China: 1.9 %[]: 0.2 %[]: 0.2 %上海: 1.4 %上海: 1.4 %东莞: 0.6 %东莞: 0.6 %临汾: 1.0 %临汾: 1.0 %保定: 0.2 %保定: 0.2 %兰州: 0.2 %兰州: 0.2 %勿加泗: 0.5 %勿加泗: 0.5 %北京: 1.8 %北京: 1.8 %十堰: 0.3 %十堰: 0.3 %南京: 0.3 %南京: 0.3 %南通: 1.4 %南通: 1.4 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %大同: 0.2 %大同: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.8 %天津: 0.8 %宁波: 0.2 %宁波: 0.2 %宣城: 0.3 %宣城: 0.3 %常州: 0.2 %常州: 0.2 %广州: 0.3 %广州: 0.3 %廊坊: 0.2 %廊坊: 0.2 %张家口: 3.4 %张家口: 3.4 %恩施土家族苗族自治州: 0.5 %恩施土家族苗族自治州: 0.5 %扬州: 0.8 %扬州: 0.8 %昆明: 0.6 %昆明: 0.6 %杭州: 0.8 %杭州: 0.8 %武汉: 2.4 %武汉: 2.4 %沈阳: 0.6 %沈阳: 0.6 %泉州: 0.3 %泉州: 0.3 %深圳: 1.0 %深圳: 1.0 %渭南: 0.2 %渭南: 0.2 %湛江: 0.3 %湛江: 0.3 %漯河: 2.9 %漯河: 2.9 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.3 %绍兴: 0.3 %芒廷维尤: 9.3 %芒廷维尤: 9.3 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %衡水: 0.3 %衡水: 0.3 %衢州: 0.2 %衢州: 0.2 %西宁: 43.1 %西宁: 43.1 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %运城: 0.5 %运城: 0.5 %通辽: 0.2 %通辽: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 0.6 %重庆: 0.6 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %阳泉: 0.5 %阳泉: 0.5 %其他Central DistrictChina[]上海东莞临汾保定兰州勿加泗北京十堰南京南通台州合肥大同大连天津宁波宣城常州广州廊坊张家口恩施土家族苗族自治州扬州昆明杭州武汉沈阳泉州深圳渭南湛江漯河石家庄秦皇岛绍兴芒廷维尤芝加哥苏州衡水衢州西宁西安西雅图运城通辽邯郸郑州重庆长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (116) PDF downloads(11) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return