Volume 39 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Ping Wang, Xingyu Hu, Fangming Zhou, Zhao Mei, Jinchi Wu. Optimization of Axial Buckling Capacity of Desulfurization Tower Based on Ideal Point Method[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 22-30. doi: 10.13206/j.gjgS23032501
Citation: Ping Wang, Xingyu Hu, Fangming Zhou, Zhao Mei, Jinchi Wu. Optimization of Axial Buckling Capacity of Desulfurization Tower Based on Ideal Point Method[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 22-30. doi: 10.13206/j.gjgS23032501

Optimization of Axial Buckling Capacity of Desulfurization Tower Based on Ideal Point Method

doi: 10.13206/j.gjgS23032501
  • Received Date: 2023-03-25
    Available Online: 2024-06-24
  • For the structural design problem of the core device of flue gas desulfurization in mining and chemical industries, taking the minimum weight and maximum buckling resistance as the optimization objectives, the multi-objective optimization problem is transformed into a single-objective optimization problem based on the ideal point method, combined with the stress distribution characteristics under different parameters. A buckling resistance optimization model for the desulfurization tower is established. Based on the APDL language, a parameterized modeling and optimization analysis method for the desulfurization tower′s buckling resistance is designed for a specific flue gas desulfurization project as the engineering background. The main conclusions of the axial compression buckling resistance optimization are as follows: 1) The ring and longitudinal reinforcing bars have good strengthening effects on the structural stability of the desulfurization tower under axial compression load, but the strengthening effect of the longitudinal reinforcing bar is significantly better than that of the ring reinforcing bar; Although the combined strengthening effect is lower than that of the longitudinal reinforcing bar alone, the engineering actual complex working conditions determine that the ring reinforcing bar is indispensable; 2) The combined strengthening structure has a significant increase in strength, the maximum allowable stress is raised by more than one and a half times, the strengthening effect is obvious; Although the degree of deformation of the structure has a slight increase, the distribution is more uniform, and the material bearing capacity can be used more fully to ensure the overall stability of the structure. 3) The optimized tower structure weight increased from 417 810 kg to 429 160 kg, an increase of 2.715%, and the structural buckling capacity increased from 22 077.435 N to 47 536.231 N, an increase of 115%. Through this optimized analysis method, a more reasonable reinforcement scheme can be obtained, the operation process is simple, and the optimization effect is obvious.
  • loading
  • [1]
    魏炜,黄朝德,郑刚,等.广东某硫精矿提质分选试验研究[J].化工矿物与加工,2022,51(10):5-8.
    [2]
    陈华,魏永军.江苏省烧结烟气二氧化硫减排能力估算[J].化工矿物与加工,2010,39(5):38-39

    ,45.
    [3]
    陈志平,焦鹏,马赫,等.基于初始缺陷敏感性的轴压薄壁圆柱壳屈曲分析研究进展[J].机械工程学报,2021,57(22):114-129.
    [4]
    Timoshenko S P.Einige stabilitätsprobleme der elastizitätstheorie[J].Zeitschrift für Mathematik und Physik,1910,58(4):337-385.
    [5]
    Lorenz R.Achsensymmetrische verzerrungen in dünnwandigen hohlzylindern[J].Zeitschrift des Vereines Deutscher Ingenieure,1908,52(43):1706-1713.
    [6]
    Donnell L H.A new theory for the buckling of thin cylinders under axial compression and bending[J].Pain Research&Management:the Journal of the Canadian Pain Society,1934,56(5):3083-3086.
    [7]
    Robertson A.The strength of tubular struts[J].Royal Society of London Proceedings,1928,121(788):558-585.
    [8]
    Salo V,Rakivnenko V,Nechiporenko V,et al.Calculation of stress concentrations in orthotropic cylindrical shells with holes on the basis of a variational method[J].Восточно-Европейский журнал передовых технологий,2019,3(7):11-17.
    [9]
    Kolodiazhnyi А,Mednikova M.The Influence of the deformation nonlinearity on stress concentration in cylindrical shells with holes under torsion[C]//Materials Science Forum.Trans Tech Publications Ltd,2019:548-559.
    [10]
    张德林.采用概率随机扰动载荷法的薄壁圆柱壳下限轴压屈曲载荷预测[D].杭州,浙江大学,2020.
    [11]
    李亚坤,王猛,王志坚,等.承压筒体长圆形开孔应力分析[J].电站辅机,2021,42(2):17-20.
    [12]
    徐明,缐伟,景鹏飞.周向外压作用下多孔圆筒屈曲分析[J].当代化工,2021,50(5):1140-1143.
    [13]
    Anonymous.Buckling of thin-walled circular cylinders:NASA SP-8032[S].USA:NASA Space,Vehicle Design Criteria,1969.
    [14]
    Wagner H N R,Huehne C,Niemann S.Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells-development and validation[J].Composite Structures,2017,173(173):281-303.
    [15]
    Wagner H N R,Huehne C,Khakimova R.On the development of shell buckling knockdown factors for imperfection sensitive conical shells under pure bending[J/OL].Thin-Walled Structures,2019,145(12)[2019-12-01].https://doi.org/10.1016/j.tws.2019.106373.
    [16]
    王博,王法垚,马祥涛,等.考虑形位公差的薄壁筒壳折减因子预测方法研究[J].固体力学学报,2021,64(3):1-11.
    [17]
    Tian K,Wang B,Hao P,et al.A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells[J].International Journal of Solids and Structures,2018,148(3):14-23.
    [18]
    刘锦,高炳军,赵慧磊.脱硫塔的强度和稳定性有限元分析[J].辽宁工程技术大学学报(自然科学版),2008(增刊1):104-106.
    [19]
    吴金池,俞栋华.基于ANSYS某脱硫塔环向加强筋计算[C]//土木工程新材料、新技术及其工程应用交流会论文集(下册).2019:559-561.
    [20]
    邱俊杰,廖少波,陈纯,等.钢脱硫塔结构有限元分析[C]//2021年工业建筑学术交流会论文集.2021:327-329.
    [21]
    陈世见.脱硫塔加湿电结构受力分析[J].设备管理与维修,2019(12):48-49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return