Ailin Zhang, Lan Tao, Xinxia Li, Yanxia Zhang. Research on Refined Installation Management of Fully Dry-Connected Prefabricated Slab Based on BIM+3D Laser Scanning Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(3): 43-50. doi: 10.13206/j.gjgS23012101
Citation: Ailin Zhang, Lan Tao, Xinxia Li, Yanxia Zhang. Research on Refined Installation Management of Fully Dry-Connected Prefabricated Slab Based on BIM+3D Laser Scanning Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(3): 43-50. doi: 10.13206/j.gjgS23012101

Research on Refined Installation Management of Fully Dry-Connected Prefabricated Slab Based on BIM+3D Laser Scanning Technology

doi: 10.13206/j.gjgS23012101
  • Received Date: 2023-01-21
    Available Online: 2023-05-24
  • Publish Date: 2023-03-25
  • The fully dry-connected prefabricated slab completely avoids wet work on the construction site, which can make full use of the advantages of short construction period and environmental protection of the steel structures. However, due to the feature of completely prefabrication of the slab, it requires high installation accuracy. Existing BIM technologies cannot consider the production and assembly errors of prefabricated components. In order to solve the problem of increased costs such as time, transportation and manpower when return to the factory for remanufacturing caused by the failure of on-site assembly due to insufficient production accuracy of the fully dry-connected prefabricated slab, a refined installation management method based on BIM+3D laser scanning technology was proposed for the fully dry-connected prefabricated slab, which could complete precision detection and virtual assembly in the storage stage of prefabricated components, effectively avoiding cost waste caused by insufficient accuracy. The refined installation management method established a spatial coordinate system using a total station in precast component factory, and determined the position coordinates of each component in space through target points, and then used a three-dimensional laser scanner to scan the cover and base slab unit of the fully dry-connected prefabricated slab to obtain the point cloud data of each component. The advanced data post-processing software MAGNET Collage was applied to achieve target splicing, point cloud data fitting, point cloud segmentation and extraction, noise reduction and coordinate system establishment so as to obtain the point cloud model of each component and its spatial position, namely, the real scene replication of the component and its spatial position in the geometry sense was realized, and the digital twin model of each component of the fully dry connected prefabricated slab with production and assembly errors was obtained. Comparing and analyzing the digital model and the ideal BIM model created according to the drawings by docking and matching the spatial coordinate systems could obtain the size and position of the corresponding errors of the prefabricated components. The assembly errors of each component in the actual installation could be obtained through the virtual preassembly between the digital models of the cover and base slab units, adjusted the coordinates of the reference points to correct the errors and output the final coordinate adjustment data to guide the on-site installation of the corresponding components. Based on the above technologies, the construction quality and safety management method of the slab were proposed, which coordinates and manages the process from factory prefabrication to on-site assembly of the fully dry-connected prefabricated slab through the five stages of production, warehousing, pre-assembly, transportation and construction. The results showed that the refined installation management method can quickly obtain the digital twin model of the fully dryconnected prefabricated slab, and analyze its production accuracy, the maximum relative error is 5%, which meets the accuracy requirements; the assemble problems that may occur in site construction due to accumulated errors can be predicted through virtual preassembly, improving the on-site installation efficiency of the fully dry-connected prefabricated slabs in steel structures, effectively avoiding cost waste caused by insufficient accuracy. The refined installation management method based on BIM+ 3D laser scanning technology can be extended to other prefabricated structures with high accuracy requirements.
  • [1]
    Kim M K, Cheng J C P, Sohn H, et al. A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning[J]. Automation in Construction, 2015, 49:225-238.
    [2]
    Li H, Zhang C, Song S, et al. Improving tolerance control on modular construction project with 3D laser scanning and BIM:a case study of removable floodwall project[J/OL]. Applied Sciences, 2020, 10(23)[2022-12-20]. https://doi.org/10.3390/app10238680.
    [3]
    Guo J J, Wang Q, Park J H. Geometric quality inspection of prefabricated MEP modules with 3D laser scanning[J/OL]. Automation in Construction, 2020, 111[2022-12-20]. https://doi.org/10.1016/j.autcon.2019.103053.
    [4]
    Feng J, Xu Y, Zhang A. Intelligent engineering management of prefabricated building based on BIM technology[J]. Informatica, 2022, 46(3):411-420.
    [5]
    Wang M, Wang C C, Zlatanova S, et al. Onsite quality check for installation of prefabricated wall panels using laser scanning[J/OL]. Buildings, 2021, 11(9)[2022-12-20]. https://doi.org/10.3390/buildings11090412.
    [6]
    Yoon S, Wang Q, Sohn H. Optimal placement of precast bridge deck slabs with respect to precast girders using 3D laser scanning[J]. Automation in Construction, 2018, 86:81-98.
    [7]
    周绪红, 刘界鹏, 程国忠, 等. 基于点云数据的大型复杂钢拱桥智能虚拟预拼装方法[J]. 中国公路学报, 2021, 34(11):1-9.
    [8]
    徐晓 珂. 三维 激光 扫描 技术 在装 配式 建筑 中的 应用 研究[C]//第五届工程 建设 计算 机应 用创 新论 坛论 文集. 上海:2015:281-288.
    [9]
    刘占省, 刘子圣, 孙佳佳, 等. 基于数字孪生的智能建造方法及模型试验[J]. 建筑结构学报, 2021, 42(6):26-36.
    [10]
    戴靠山, 徐一智, 公羽, 等. 三维激光扫描在风电塔检测中的应用[J]. 结构工程师, 2014, 30(2):111-115.
  • Relative Articles

    [1]Xianshun Li, Kai Zhang. Comparative Study on Fireproofing Design of Steel Structures in Petrochemical Industry Between Chinese and American Standards[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 42-47. doi: 10.13206/j.gjgS23041001
    [2]Jiping Hao, Shaofan Chen, Junfen Yang. Further Discussion on the Development of Steel Structure Theory and the Evolution of Steel Structure Textbooks[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 77-83. doi: 10.13206/j.gjgS24092801
    [3]Jingfeng Liu, Zhenming Chen, Hongli Yan, Minfang Wan, Lei Jiang. Research Progress and Practice of Steel Structure Connection Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 93-100. doi: 10.13206/j.gjgS24083026
    [4]Zhenming Chen, Peng Wang, Minfang Wan, Bing Lin. Engineering Practice of Steel Structure Intelligent Manufacturing Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 80-86. doi: 10.13206/j.gjgS24083025
    [5]Xiaoshan Gu. Development and Practice of Steel Structure Technology for Industrial Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 40-45. doi: 10.13206/j.gjgS24101228
    [6]Shuxin Liu, Yongqian Zhang, Yuan Liu, Hongpeng Sun. Status and Prospect of Boiler Steel Structure Technology Development[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 56-62. doi: 10.13206/j.gjgS24101036
    [7]Bingchuan Tang, Jiepeng Liu. Development of Intelligent Manufacturing Technology for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 119-126. doi: 10.13206/j.gjgS24052122
    [8]Li Ding, Shangrui Jia, Chuqiao Wu, Changsen Xu. Research on Key Technologies of Cantilever Lifting of Large Cantilever Spoke Truss Structure with Inner Support[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(4): 34-40. doi: 10.13206/j.gjgS23013101
    [9]Wenzhong Wu. Stochastic Response and Controlling to Earthquake Wave in Compound Periodic Steel Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(12): 48-53. doi: 10.13206/j.gjgS23063004
    [10]ZHANG Jin, WANG Li-jun, YANG Lyu-lei, GONG Min-feng. Discussion and Improvement Research on Performance-Based Seismic Design Method for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 37-65. doi: 10.13206/j.gjgS22121903
    [11]HAN Ming-lan, SHI Jian-hua, SHI Zhen-hai, WANG Yan. Analysis on Seismic Properties of Embedded and Reinforced Prefabricated Connection with Cantilever Beam[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 1-12. doi: 10.13206/j.gjgS22110101
    [12]Lingxiao Zuo, Weitong Yi, Lei Zhu, Donglin Lyu, Hailin Sun. Methods for Determining Ultimate Bearing Capacity of Steel Beam-Column Joints Based on Moment-Rotation Curves[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(5): 18-27. doi: 10.13206/j.gjgS22031101
    [13]NI Ming, LUO Huijian, GUAN Lei, WU Debao, XU Siwei. Application of 3D Laser Scanning Technology in Large-Scale Soccer Field Engineering[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(12): 24-30. doi: 10.13206/j.gjgS22071601
    [14]Meijing Liu, Shaoru Zeng, Shenggang Fan. Analysis and Design of Complex Steel Structure of High-Rising Sightseeing Tower[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 56-63. doi: 10.13206/j.gjgS20080502
    [15]Huimin Fu, Bin Ma, Longgui Bu, Yong Wang, Qing Zuo, Duomin Wang, Zhenyong Guo, Wenping Wu, Jianhua Li. Structural Design of Qinghe Station[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 7-15. doi: 10.13206/j.gjgS20072302
    [16]Fei Yin, Lu Yang, Gang Shi, Xiaolin Li. OVERVIEW OF RESEARCH PROGRESS FOR SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL STRUCTURES[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 1-25. doi: 10.13206/j.gjgSE20010805
    [17]Yinquan Yu, Fengqi Zhu, Zhe Wang. Review of the Promotion and Application of Steel Structures in Construction[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 59-69. doi: 10.13206/j.gjgSE19112602
    [18]Ruifeng Li, Xinhua Liu, Guojun Xu. Design Theory Method of Staggered Truss Structure and Research on Assembled Integration Technology Application[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(11): 55-64. doi: 10.13206/j.gjgS20042601
  • Cited by

    Periodical cited type(3)

    1. 杜婧. 融合BIM模型和3D激光点云技术的装配式建筑误差设计与控制. 九江学院学报(自然科学版). 2024(04): 56-59 .
    2. 齐成龙,李政道. 铁路装配式桥梁智能建造技术体系研究. 铁道建筑技术. 2023(09): 1-4+27 .
    3. 李卓衡,林森,罗康,刘占省,刘司博. 雄安大学园图书馆智能建造技术研究与应用. 建筑技术. 2023(22): 2793-2796 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.3 %FULLTEXT: 18.3 %META: 76.1 %META: 76.1 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 1.0 %其他: 1.0 %China: 0.3 %China: 0.3 %Falls Church: 0.3 %Falls Church: 0.3 %上海: 1.3 %上海: 1.3 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %勿加泗: 0.7 %勿加泗: 0.7 %北京: 7.0 %北京: 7.0 %南京: 0.3 %南京: 0.3 %厦门: 0.3 %厦门: 0.3 %合肥: 0.3 %合肥: 0.3 %天津: 0.3 %天津: 0.3 %宣城: 0.3 %宣城: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 1.0 %广州: 1.0 %廊坊: 0.3 %廊坊: 0.3 %开封: 0.3 %开封: 0.3 %张家口: 6.3 %张家口: 6.3 %新乡: 2.0 %新乡: 2.0 %昆明: 1.0 %昆明: 1.0 %晋城: 0.7 %晋城: 0.7 %杭州: 2.0 %杭州: 2.0 %格兰特县: 0.3 %格兰特县: 0.3 %沈阳: 1.3 %沈阳: 1.3 %泉州: 0.3 %泉州: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 1.3 %湖州: 1.3 %漯河: 1.0 %漯河: 1.0 %潍坊: 1.0 %潍坊: 1.0 %福州: 0.3 %福州: 0.3 %芒廷维尤: 7.0 %芒廷维尤: 7.0 %芝加哥: 0.7 %芝加哥: 0.7 %西宁: 41.9 %西宁: 41.9 %运城: 1.0 %运城: 1.0 %郑州: 0.3 %郑州: 0.3 %重庆: 1.0 %重庆: 1.0 %长沙: 0.3 %长沙: 0.3 %其他其他ChinaFalls Church上海佛山保定勿加泗北京南京厦门合肥天津宣城常州常德广州廊坊开封张家口新乡昆明晋城杭州格兰特县沈阳泉州深圳温州湖州漯河潍坊福州芒廷维尤芝加哥西宁运城郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (228) PDF downloads(17) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return