Citation: | Guochang Li, Lirong Wei, Zengmei Qiu, Xu Liu. Seismic Fragility Analysis of High-Strength Concrete Filled Steel Tube Column-Aluminum Alloy Buckling Restrained Braces Structure System[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 1-9. doi: 10.13206/j.gjgS22120201 |
[1] |
清华大学土木工程结构专家组,西南交通大学土木工程结构专家组,北京交通大学土木工程结构专家组,等.汶川地震建筑震害分析[J].建筑结构学报, 2008, 29(4):1-9.
|
[2] |
李帼昌,张洪恩.一种双铝合金板装配式屈曲约束支撑:108060727A[P]. 2018-05-22.
|
[3] |
李帼昌,张洪恩,杨志坚,等.新型双铝合金板装配式屈曲约束支撑有限元分析[J].钢结构, 2018, 33(5):57-62.
|
[4] |
李帼昌,王哲渊,闫鹤丹.装配式全角钢约束的铝合金内芯屈曲约束支撑滞回性能试验研究[J/OL].土木工程学报,2023[2023-03-27]. http://doi.org/10.
15951/j.tmgcxb.23020110.
|
[5] |
李帼昌,闫鹤丹,邱增美.装配式双铝合金内芯屈曲约束支撑滞回性能试验研究[J].建筑结构学报,2023,44(5):209-220.
|
[6] |
吕西林,苏宁粉,周颖.复杂高层结构基于增量动力分析法的地震易损性分析[J].地震工程与工程振动, 2012, 32(5):19-25.
|
[7] |
Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Strutural Engineering, 2002, 128(4):526-533.
|
[8] |
叶飞.基于OpenSEES的RC框架结构抗地震倒塌性能分析[D].长沙:湖南大学, 2011.
|
[9] |
吴巧云,朱宏平,樊剑.基于性能的钢筋混凝土框架结构地震易损性分析[J].工程力学, 2012, 29(9):117-124.
|
[10] |
Xu C, Deng J, Peng S, et al. Seismic fragility analysis of steel reinforced concrete frame structures based on different engineering demand parameters[J]. Journal of Building Engineering, 2018, 20:736-749.
|
[11] |
于晓辉,吕大刚,范峰.基于易损性指数的钢筋混凝土框架结构地震损伤评估[J].工程力学, 2017, 34(1):69-75.
|
[12] |
Sharma V, Shrimali M K, Bharti S D, et al. Seismic fragility evaluation of semi-rigid frames subjected to near-field earthquakes[J/OL]. Journal of Constructional Steel Research, 2021[2021-01-01]. http://doi.org/10.1016/j.jcsr.2020.106384.
|
[13] |
刘晶波,刘阳冰,闫秋实,等.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报, 2010, 43(2):39-47.
|
[14] |
Mojtaba A, Maryam N, Ali K P. Influence of foundation flexibility on seismic fragility of reinforced concrete high-rise buildings[J/OL]. Soil Dynamics and Earthquake Engineering, 2021[2020-12-17]. http://doi.org/10.1016/j.soildyn.2020.106521.
|
[15] |
Hu S L, Wang W. Comparative seismic fragility assessment of mid-rise steel buildings with non-buckling (BRB and SMA) braced frames and self-centering energy-absorbing dual rocking core system[J/OL]. Soil Dynamics and Earthquake Engineering, 2021[2020-12-17]. http://doi.org/10.1016/j.soildyn.2020.106546.
|
[16] |
Scott B D, Park R, Priestley M. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Structural Journal, 1982, 79(1):13-27.
|
[17] |
Mander J, Priestley M. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
|
[18] |
Applied Technology Council, Federal Emergency Management Argency (FEMA). Quantification of building seismic performance factors[R]. Washington D C:FEMA, 2008.
|
[19] |
Federal Emergency Management Agency (FEMA). Prestandard and commentary for seismic rehabilitation of buildings:FEMA 356[R]. Washington D C:FEMA, 2009.
|
[20] |
李文博.基于IDA方法的RC框架结构地震易损性分析研究[D].西安:西安建筑科技大学, 2012.
|
[21] |
Federal Emergency Management Agency (FEMA). Earthquake loss estimation methodology:user's manual:HAZUS99[R]. Washington D C:FEMA, 1999.
|
[22] |
中华人民共和国住房和城乡建设部.高层建筑混凝土结构技术规程:JGJ 3-2010[S].北京:中国建筑工业出版社, 2010.
|
[23] |
Federal Emergency Management Agency (FEMA). Quantification of building seismic performance factors:FEMA P695[S]. Washington D C:FEMA, 2009.
|
[24] |
孙晓静,杨锋,张海涛.基于IDA的全钢管混凝土框架结构地震易损性研究[J].结构工程师, 2021, 37(1):75-81.
|
[25] |
李贝贝.装配式钢管混凝土框架-屈曲约束支撑结构抗震设计方法及地震易损性分析[D].合肥:合肥工业大学, 2019.
|