Guochang Li, Lirong Wei, Zengmei Qiu, Xu Liu. Seismic Fragility Analysis of High-Strength Concrete Filled Steel Tube Column-Aluminum Alloy Buckling Restrained Braces Structure System[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 1-9. doi: 10.13206/j.gjgS22120201
Citation: Guochang Li, Lirong Wei, Zengmei Qiu, Xu Liu. Seismic Fragility Analysis of High-Strength Concrete Filled Steel Tube Column-Aluminum Alloy Buckling Restrained Braces Structure System[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 1-9. doi: 10.13206/j.gjgS22120201

Seismic Fragility Analysis of High-Strength Concrete Filled Steel Tube Column-Aluminum Alloy Buckling Restrained Braces Structure System

doi: 10.13206/j.gjgS22120201
  • Received Date: 2022-12-02
    Available Online: 2024-08-16
  • In order to study the failure probability of the high-strength CFST-aluminum alloy core assembled buckling-restrained braces (HSCSB-ALAB) under different intensity of ground motion, based on the incremental dynamic analysis (IDA) method, the near-field pulse ground motion, far-field ground motion, near-field ground motion and integrated ground motion were selected. The seismic fragility of a 10 story HSC-SB-ALAB is analyzed by using four groups of 45 strong motion records. The fragility curves of the structure under four earthquake types are obtained; the probability of reaching each limit state of the structure under frequent earthquake, fortified earthquake and rare earthquake is given; and the collapse margin ratio of the structure is calculated and evaluated.
    The results show that the probability of reaching each limit state is the largest under the action of near-field impulse ground motion, and the exceeding probability is the smallest under the action of far-field earthquake. Under the action of various types of ground motions, the collapse probability of the structure is only about 1%, which meets the seismic fortification goal of "no damage in small earthquake, repairable in medium earthquake and no collapse in large earthquake". The collapse reserve coefficient is greater than the minimum value of 2. 47 required in FEMA P695, which is 1. 34-1. 43 times that of other types of concrete-filled steel tubular structures.
  • [1]
    清华大学土木工程结构专家组,西南交通大学土木工程结构专家组,北京交通大学土木工程结构专家组,等.汶川地震建筑震害分析[J].建筑结构学报, 2008, 29(4):1-9.
    [2]
    李帼昌,张洪恩.一种双铝合金板装配式屈曲约束支撑:108060727A[P]. 2018-05-22.
    [3]
    李帼昌,张洪恩,杨志坚,等.新型双铝合金板装配式屈曲约束支撑有限元分析[J].钢结构, 2018, 33(5):57-62.
    [4]
    李帼昌,王哲渊,闫鹤丹.装配式全角钢约束的铝合金内芯屈曲约束支撑滞回性能试验研究[J/OL].土木工程学报,2023[2023-03-27]. http://doi.org/10.

    15951/j.tmgcxb.23020110.
    [5]
    李帼昌,闫鹤丹,邱增美.装配式双铝合金内芯屈曲约束支撑滞回性能试验研究[J].建筑结构学报,2023,44(5):209-220.
    [6]
    吕西林,苏宁粉,周颖.复杂高层结构基于增量动力分析法的地震易损性分析[J].地震工程与工程振动, 2012, 32(5):19-25.
    [7]
    Cornell C A, Jalayer F, Hamburger R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Strutural Engineering, 2002, 128(4):526-533.
    [8]
    叶飞.基于OpenSEES的RC框架结构抗地震倒塌性能分析[D].长沙:湖南大学, 2011.
    [9]
    吴巧云,朱宏平,樊剑.基于性能的钢筋混凝土框架结构地震易损性分析[J].工程力学, 2012, 29(9):117-124.
    [10]
    Xu C, Deng J, Peng S, et al. Seismic fragility analysis of steel reinforced concrete frame structures based on different engineering demand parameters[J]. Journal of Building Engineering, 2018, 20:736-749.
    [11]
    于晓辉,吕大刚,范峰.基于易损性指数的钢筋混凝土框架结构地震损伤评估[J].工程力学, 2017, 34(1):69-75.
    [12]
    Sharma V, Shrimali M K, Bharti S D, et al. Seismic fragility evaluation of semi-rigid frames subjected to near-field earthquakes[J/OL]. Journal of Constructional Steel Research, 2021[2021-01-01]. http://doi.org/10.1016/j.jcsr.2020.106384.
    [13]
    刘晶波,刘阳冰,闫秋实,等.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报, 2010, 43(2):39-47.
    [14]
    Mojtaba A, Maryam N, Ali K P. Influence of foundation flexibility on seismic fragility of reinforced concrete high-rise buildings[J/OL]. Soil Dynamics and Earthquake Engineering, 2021[2020-12-17]. http://doi.org/10.1016/j.soildyn.2020.106521.
    [15]
    Hu S L, Wang W. Comparative seismic fragility assessment of mid-rise steel buildings with non-buckling (BRB and SMA) braced frames and self-centering energy-absorbing dual rocking core system[J/OL]. Soil Dynamics and Earthquake Engineering, 2021[2020-12-17]. http://doi.org/10.1016/j.soildyn.2020.106546.
    [16]
    Scott B D, Park R, Priestley M. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Structural Journal, 1982, 79(1):13-27.
    [17]
    Mander J, Priestley M. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
    [18]
    Applied Technology Council, Federal Emergency Management Argency (FEMA). Quantification of building seismic performance factors[R]. Washington D C:FEMA, 2008.
    [19]
    Federal Emergency Management Agency (FEMA). Prestandard and commentary for seismic rehabilitation of buildings:FEMA 356[R]. Washington D C:FEMA, 2009.
    [20]
    李文博.基于IDA方法的RC框架结构地震易损性分析研究[D].西安:西安建筑科技大学, 2012.
    [21]
    Federal Emergency Management Agency (FEMA). Earthquake loss estimation methodology:user's manual:HAZUS99[R]. Washington D C:FEMA, 1999.
    [22]
    中华人民共和国住房和城乡建设部.高层建筑混凝土结构技术规程:JGJ 3-2010[S].北京:中国建筑工业出版社, 2010.
    [23]
    Federal Emergency Management Agency (FEMA). Quantification of building seismic performance factors:FEMA P695[S]. Washington D C:FEMA, 2009.
    [24]
    孙晓静,杨锋,张海涛.基于IDA的全钢管混凝土框架结构地震易损性研究[J].结构工程师, 2021, 37(1):75-81.
    [25]
    李贝贝.装配式钢管混凝土框架-屈曲约束支撑结构抗震设计方法及地震易损性分析[D].合肥:合肥工业大学, 2019.
  • Relative Articles

    [1]Ming Huang, Cheng Shi, Pengfei Wang, Luyan Shi. Analysis of the Application of Combined Damping Technique in Ensuring the Normal Use of Steel Structure Hospital Under Moderate Earthquakes[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(1): 34-41. doi: 10.13206/j.gjgS23112101
    [2]Biao Li, Fei Lyu, Hao Sun, Faxing Ding, Yongqiang Cai, Chaocheng Zhang. Comparative Study on Seismic Performance of Several Types of Square Section Piers at the Same Cost[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(1): 53-67. doi: 10.13206/j.gjgS23063003
    [3]Jianwei Li, Lanlan Wang, Chen Jia, Lanhui Guo. Axial Compression Performance of Slender Concrete-Filled Circular Steel Tubular Column with Pitting Corrosion Damage[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 47-54. doi: 10.13206/j.gjgS23111502
    [4]Shuxin Liu, Yongqian Zhang, Yuan Liu, Hongpeng Sun. Status and Prospect of Boiler Steel Structure Technology Development[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 56-62. doi: 10.13206/j.gjgS24101036
    [5]Yan Gao Guochang Li Xiao Li, . Finite Element Analysis of Pure Bending Properties of Square Steel Tube-Wood-Concrete Members[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 38-46. doi: 10.13206/j.gjgS23110202
    [6]Zhijian Yang Wenzhi Zuo, . Finite Element Analysis on Axial Compressive Performance of RHHCFST Short Columns with Longitudinal Stiffeners[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 19-28. doi: 10.13206/j.gjgS23112901
    [7]Genshu Tong. Limiting Confining Factor for Concrete Filled Circular Tube[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(6): 61-63. doi: 10.13206/j.gjgS22123020
    [8]Qingqing Xiong, Jiahui Qian, Zhihua Chen. Research Progress on Mechanical Properties of Concrete-Filled Steel Tube Members Under Corrosive Environment[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 1-19. doi: 10.13206/j.gjgs22041501
    [9]Wenfu Zhang, Feng Ma, Kaijie Zhu, Bin Huang. Theoritical Study of Flexural-Torsional Buckling of Biaxial Symmetric Dumbbell-Shaped CFST Arches Based on Plate-Beam Theory[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(2): 13-21. doi: 10.13206/j.gjgS21090401
    [10]Yue Chen, Gang Wang, Xiaobin Hao, Guihai Yan. Evaluation of the Mechanism and Influence Parameters of the Core Concrete Debonding in the Concrete-Filled Steel Tube[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 20-30. doi: 10.13206/j.gjgS21110501
    [11]Longgui Bu, Zhongyi Zhu, Juehui Xing, Yiqiao Tang, Kai Qin, Zhaodong Li, Xuemin Wang. Steel Structure Design of Nantong International Conference Center[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 1-6. doi: 10.13206/j.gjgS20071401
  • Cited by

    Periodical cited type(1)

    1. 于佳齐. 混凝土结构在地震灾害中的性能分析与改进措施探讨. 张江科技评论. 2024(08): 102-104 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.9 %FULLTEXT: 19.9 %META: 74.5 %META: 74.5 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 33.7 %其他: 33.7 %China: 1.5 %China: 1.5 %上海: 1.0 %上海: 1.0 %北京: 3.6 %北京: 3.6 %南京: 2.0 %南京: 2.0 %南宁: 1.0 %南宁: 1.0 %台州: 2.0 %台州: 2.0 %合肥: 0.5 %合肥: 0.5 %唐山: 1.0 %唐山: 1.0 %天津: 0.5 %天津: 0.5 %太原: 1.0 %太原: 1.0 %常州: 0.5 %常州: 0.5 %常德: 1.0 %常德: 1.0 %广州: 2.6 %广州: 2.6 %廊坊: 0.5 %廊坊: 0.5 %张家口: 6.6 %张家口: 6.6 %徐州: 0.5 %徐州: 0.5 %无锡: 1.0 %无锡: 1.0 %昆明: 1.0 %昆明: 1.0 %杭州: 1.5 %杭州: 1.5 %武汉: 0.5 %武汉: 0.5 %沈阳: 1.0 %沈阳: 1.0 %济南: 2.0 %济南: 2.0 %湖州: 1.5 %湖州: 1.5 %漯河: 1.0 %漯河: 1.0 %玉溪: 0.5 %玉溪: 0.5 %珠海: 1.5 %珠海: 1.5 %绍兴: 0.5 %绍兴: 0.5 %芒廷维尤: 18.4 %芒廷维尤: 18.4 %芝加哥: 2.0 %芝加哥: 2.0 %荆州: 1.0 %荆州: 1.0 %荆门: 0.5 %荆门: 0.5 %衢州: 0.5 %衢州: 0.5 %西宁: 0.5 %西宁: 0.5 %西安: 0.5 %西安: 0.5 %运城: 1.0 %运城: 1.0 %遵义: 0.5 %遵义: 0.5 %重庆: 1.5 %重庆: 1.5 %长沙: 1.0 %长沙: 1.0 %鞍山: 0.5 %鞍山: 0.5 %其他China上海北京南京南宁台州合肥唐山天津太原常州常德广州廊坊张家口徐州无锡昆明杭州武汉沈阳济南湖州漯河玉溪珠海绍兴芒廷维尤芝加哥荆州荆门衢州西宁西安运城遵义重庆长沙鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (145) PDF downloads(11) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return