Zhaoxin Hou, Chao Gong, Yanxia Zhang, Zihao Liang, Weiqiao Liang, Wujun Fang. New Development of High Strength Bolt Connections in Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(1): 1-12. doi: 10.13206/j.gjgS20081901
Citation: Jiongfeng Liang, Liuhaoxiang Wang, Rulai Liu, Rui Ren, Yong Yang. Experimental Study on Shear Behavior of Prefabricated and Assembly Partially Encased Concrete Beam[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(6): 42-50. doi: 10.13206/j.gjgS22090801

Experimental Study on Shear Behavior of Prefabricated and Assembly Partially Encased Concrete Beam

doi: 10.13206/j.gjgS22090801
  • Received Date: 2022-09-08
    Available Online: 2023-07-01
  • The rise of logistics industry has given birth to the concept of logistics architecture, which is characterized by large load, large span and high floor height. For such buildings, the existing steel-concrete composite beams and steel reinforced concrete beams are not only expensive, but also resource consuming, which runs counter to the new green construction mode advocated in our country. In practical engineering applications, the owner urgently needs to reduce the project cost. Therefore it is particularly important to develop new horizontal components for such buildings. In order to solve the above problems, a prefabricated partially encased concrete beam(PPECB) by combining partially encased concrete beam(PECB) with unsupported construction method is proposed in this paper. In order to study the shear behavior of prefabricated partially encased concrete beams, eight partially prefabricated beams and one PEC beam(monolithic casting comparison specimen) were designed to study the shear behavior. The main purpose is to observe and record the whole test process, and obtain the shear failure characteristics, crack development, strain development law, and mid-span deflection curve of prefabricated partially encased concrete beams under vertical load. The shear failure mechanism of precast partially encased concrete beams is clarified. The influence of pouring method, steel web thickness, concrete strength, stirrup diameter, stirrup spacing and shear span ratio on the shear performance of precast partially encased concrete beams is discussed. The shear bearing capacity model of precast partially encased concrete beams is established, and the calculation method of shear bearing capacity of precast partially encased concrete beams is deduced. The test results show that the prefabricated partially encased concrete beam can basically maintain the overall working performance, which is more consistent with the shear performance of the cast-in-place partially encased concrete composite beam(PECB), and its shear bearing capacity is slightly lower than the cast-in-place partially encased concrete composite beam. In general, it is considered that the different pouring methods of pouring and prefabrication have little influence on the bearing capacity of specimens. The shear failure mode of prefabricated partially encased concrete beams is shear failure. The largest crack develops slowly before yielding and rapidly after yielding. The concrete strength, stirrup spacing and diameter have great influence on the crack development rate. With the increase of concrete strength grade, the shear capacity of prefabricated partially encased concrete beams increases. The shear capacity of prefabricated partially encased concrete beams increases with the increase of steel web thickness. Increasing the diameter of stirrups and decreasing the spacing of stirrups can improve the shear capacity of prefabricated partially encased concrete beams. When the shear span ratio is between 1.5 and 2.5, the shear capacity of prefabricated partially encased concrete beams decreases with the increase of shear span ratio. With reference to the existing specifications, the formula for calculating the shear capacity of prefabricated partially encased concrete beams is preliminarily given. Based on this theory, the calculated results are in good agreement with the test values, which can provide reference for practical engineering applications.
  • [1]
    He J,Liu Y Q,Lin Z F,et al.Shear behavior of partially encased composite I-girder with corrugated steel web:numerical study[J].Journal of Constructional Steel Research,2012,79(10):166-182.
    [2]
    Nakamura S I,Narita N.Bending and shear strengths of partially encased composite I-girders[J].Journal of Constructional Steel Research,2003,59(12):1435-1453.
    [3]
    Wang B L,Hu X M.Design of vertical shear behavior of partially encased composite beam[J].Low Temperature Architecture Technology,2008,76(4):61-63.
    [4]
    卢国辉,赵宝成.T 型钢 PEC 梁抗剪性能研究[J].苏州科技学院学报(工程技术版),2012,25(3):28-32.
    [5]
    Huo B Y,D′Mello C,Tsavdaridis K D.Experimental and analytical study of push-out shear tests in ultra shallow floor beams[C]//The 34th IABSE Symposium-International Association for Bridge and Structural Engineering.Venice:Italy,2010:31-38.
    [6]
    Morcous G,Henin E,Fawzy F,et al.A new shallow precast/prestressed concrete floor system for multi-story buildings in low seismic zones[J].Engineering Structures,2014,60(2):287-299.
    [7]
    梁炯丰,张刘峰,杨勇,等.预制装配部分外包混凝土组合梁受弯承载力试验研究[J].建筑结构学报,2021,42(3):154-162.
    [8]
    中华人民共和国住房和城乡建设部.装配式混凝土结构技术规程:JGJ 1—2014[S].北京:中国建筑工业出版社,2014.
    [9]
    European Committee for Standardisation(ECS).Eurocode 4:design of composite steel and concrete sstructures.part 1.1:general rules and rules for buildings[S].Brussels:ECS,2004.
    [10]
    姚谦峰.土木工程结构试验[M].北京:中国建筑工业出版社,2008:256-263.
    [11]
    聂建国,陈林,肖岩.钢-混凝土组合梁正弯矩区截面的组合抗剪性能[J].清华大学学报(自然科学版),2002,42(6):835-838.
    [12]
    回国臣,吴献.钢-混凝土组合梁抗剪承载力计算[J].有色矿冶,2001,17(4):36-38.
    [13]
    中华人民共和国住房和城乡建设部.组合结构设计规范:JGJ 138—2016[S].北京:中国建筑工业出版社,2016.
    [14]
    中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2014.
  • Relative Articles

    [1]Yinquan Yu, Zhe Wang, Chang Chai, Lijun Wang, Houjun Xu. Overview of China’s Steel Structure Codes and Standards System[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 58-67. doi: 10.13206/j.gjgS24090520
    [2]Zhihua Chen, Hao Feng, Jiadi Liu. Research on the Pull-out Behavior of Light Gauge Steel-Fast Growing Timber with Self-Tapping Screw Connection[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(9): 1-8. doi: 10.13206/j.gjgS23061401
    [3]Zhaoxin Hou, Chao Gong, Zihao Liang, Gang Wang, Zhidong Yao. Experimental Investigation on the Effects of Temperature on the Bearing Capacity of High Strength Bolt Connections[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(1): 50-59. doi: 10.13206/j.gjgS20081803
    [4]Yongjiu Shi. Comparisons Between Chinese and American Standards on Bolted Connection Design[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(8): 33-56. doi: 10.13206/j.gjgS20052506
  • Cited by

    Periodical cited type(10)

    1. 吕明奎,夏添,张保耀,杨东辉,陈敬. 35CrMo钢高强度螺栓热处理工艺优化. 金属热处理. 2024(05): 226-230 .
    2. 徐菲,陆一安,周绪红,王宇航. 高强度环槽铆钉ML40Cr材料单轴拉伸及低周疲劳性能研究. 建筑结构学报. 2024(10): 217-228 .
    3. 刘景凤,陈振明,严洪丽,万敏芳,江磊. 钢结构的连接技术研究进展与实践. 钢结构(中英文). 2024(11): 93-100 . 本站查看
    4. 薛宪政. 上跨京沪高铁钢桁梁桥耐久性及安全防护设计. 桥梁建设. 2023(01): 116-122 .
    5. 韩贵生,张学敏,李海涛,樊帅奇,戴姣燕,徐金富. 42CrMoVNb钢的热处理工艺优化及力学性能. 金属热处理. 2023(04): 161-165 .
    6. 李然,马倩玲,杨秀红,林峰,颜孙杰. 新型方钢管梁柱全螺栓套筒节点研究. 工程建设与设计. 2023(21): 205-207 .
    7. 向鹏宇,陈兵,邱菲菲,朱忠尹,苟国庆. 螺栓横向剪力的超声检测. 无损检测. 2022(03): 36-39+74 .
    8. 曲凯,杨俊芬,郝际平,薛强,路朋. 国产12.9级高强度螺栓力学性能试验研究. 建筑结构学报. 2022(06): 103-116 .
    9. 刘永超. 基于振动声学的螺栓疲劳开裂检测方法. 制造技术与机床. 2022(08): 142-148 .
    10. 潘思彤,夏天,李泽新. 栓接钢箱梁高强度螺栓病害分析. 城市道桥与防洪. 2021(12): 137-139+143+19 .

    Other cited types(14)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.7 %FULLTEXT: 15.7 %META: 78.3 %META: 78.3 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.5 %其他: 16.5 %上海: 3.5 %上海: 3.5 %东营: 0.6 %东营: 0.6 %临沂: 0.2 %临沂: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.4 %佛山: 0.4 %兰州: 0.2 %兰州: 0.2 %内江: 0.2 %内江: 0.2 %勿加泗: 0.4 %勿加泗: 0.4 %北京: 3.8 %北京: 3.8 %十堰: 0.6 %十堰: 0.6 %南京: 3.3 %南京: 3.3 %南通: 0.2 %南通: 0.2 %合肥: 0.4 %合肥: 0.4 %唐山: 0.6 %唐山: 0.6 %商丘: 0.2 %商丘: 0.2 %嘉兴: 0.6 %嘉兴: 0.6 %大连: 0.2 %大连: 0.2 %天津: 1.3 %天津: 1.3 %太原: 0.6 %太原: 0.6 %宁波: 0.8 %宁波: 0.8 %安康: 0.2 %安康: 0.2 %安阳: 0.2 %安阳: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.6 %常州: 0.6 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %廊坊: 0.2 %廊坊: 0.2 %张家口: 4.6 %张家口: 4.6 %成都: 0.8 %成都: 0.8 %扬州: 0.8 %扬州: 0.8 %无锡: 0.4 %无锡: 0.4 %日喀则: 0.2 %日喀则: 0.2 %昆明: 0.4 %昆明: 0.4 %杭州: 2.9 %杭州: 2.9 %柳州: 0.2 %柳州: 0.2 %武汉: 0.4 %武汉: 0.4 %江门: 0.8 %江门: 0.8 %沈阳: 1.5 %沈阳: 1.5 %法兰克福: 0.6 %法兰克福: 0.6 %济南: 0.6 %济南: 0.6 %海口: 0.4 %海口: 0.4 %深圳: 0.4 %深圳: 0.4 %温州: 0.6 %温州: 0.6 %湖州: 0.2 %湖州: 0.2 %滨州: 0.2 %滨州: 0.2 %漯河: 4.6 %漯河: 4.6 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.8 %烟台: 0.8 %珠海: 0.2 %珠海: 0.2 %眉山: 0.2 %眉山: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.6 %福州: 0.6 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 7.7 %芒廷维尤: 7.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.4 %苏州: 0.4 %蚌埠: 0.2 %蚌埠: 0.2 %西宁: 22.5 %西宁: 22.5 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.6 %运城: 0.6 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 1.9 %重庆: 1.9 %长沙: 1.3 %长沙: 1.3 %青岛: 2.3 %青岛: 2.3 %驻马店: 0.4 %驻马店: 0.4 %其他上海东营临沂伊利诺伊州佛山兰州内江勿加泗北京十堰南京南通合肥唐山商丘嘉兴大连天津太原宁波安康安阳宣城常州常德广州廊坊张家口成都扬州无锡日喀则昆明杭州柳州武汉江门沈阳法兰克福济南海口深圳温州湖州滨州漯河潍坊烟台珠海眉山石家庄福州绵阳芒廷维尤芝加哥苏州蚌埠西宁西安西雅图贵阳运城邯郸郑州重庆长沙青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (180) PDF downloads(8) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return