AN Luming, ZHAO Jian, REN Yanlong, SHI Linze, CHENG Bin. 3D Laser Scanning Technology Research for Erection Line-Shape Monitoring of Long-Span Steel Truss Arch Bridge[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(12): 18-23. doi: 10.13206/j.gjgS22051001
Citation: XU Jianshe, WU Jin, LU Jin, ZHANG Qian. Experimental Investigation of a Fan-Shaped Assembled Joint for Curved Lattice Shells[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(12): 1-9. doi: 10.13206/j.gjgS22081402

Experimental Investigation of a Fan-Shaped Assembled Joint for Curved Lattice Shells

doi: 10.13206/j.gjgS22081402
  • Received Date: 2022-08-14
    Available Online: 2023-04-20
  • A new fan-shaped assembled joint for curved lattice shell structure is proposed, which is mainly composed of three parts: fan-shaped component, central rib plates and high-strength bolts. Different from the traditional welded joints, the main sections of this joint are prefabricated by the factory and assembled on site using high-strength bolts, which not only reduces the welding work but also avoids overhead welding, and reduces the construction difficulty and risk. In addition, the joint is connected without cover plates, fully reflecting its semi-rigid characteristics, and also facilitating later maintenance. The static comparison experiment between the assembled joint and the welded joint was conducted for exploring mechanical characteristics of the joint. A total of six full-scale joint specimens were tested with the type and loading condition as test variables. The strain distribution, load-displacement curve, moment-rotation curve and failure mode of the key parts were analyzed, and the weak parts and the influence of bias pressure were obtained. The evolution process of mechanical characteristics under uniaxial compression and bending was analyzed by finite element method and compared with the experimental results. Through the experiment and finite element analysis, the following conclusions can be drawn: under uniaxial compression, the fan-shaped assembled joint shows the same mechanical performance as the welded joint, the force is reliable, the deformation is small, and the axial stiffness is very close during the whole process of loading. Under the eccentric compression, the axial stiffness of the fan-shaped assembled joint decreases significantly, indicating the influence of the compression-bending combination on the joint should be considered in the practical engineering application. In the bending test, the failure process of the fan-shaped assembled joint experiences three stages: 1) the elastic stage(<81.5 kN·m), in which the joint shows good bending performance; 2) the elastic-plastic stage(81.5-142.6 kN·m), in which the bending stiffness decreases markedly, and the rotation increases gradually owing to bolt slippage and deformation of the bolt hole wall; and 3) the plastic failure stage(>143 kN·m), in which the bolt is brittle and the specimen fails, indicating that the key to improving the bending stiffness of the fan-shaped assembled joint is improving the shear strength of the bolt. The final failure mode, stress distribution, and bending moment-rotation curve of the finite element analysis are in good agreement with those of the experiments.
  • [1]
    Parke G A R,Behnejad S A,Makowski Z S.A pioneer of space structures[J].International Journal of Space Structures,2015,30(3/4):191-201.DOI: 10.1260/0266-3511.30.3-4.191.
    [2]
    冯远,张恒飞,向新岸,等.跨度800 m双层网壳结构静力及稳定性能研究[J].建筑结构学报,2017,38(1):32-41.
    [3]
    张中昊,刘璐,支旭东,等.索撑双向网格型单层柱面网壳稳定性研究[J].建筑结构学报,2021,42(1):39-47.
    [4]
    阮永辉,王宝通.某新型单层网壳节点的承载力研究分析[J].建筑结构,2016,46(增刊1):528-531.
    [5]
    黄泽韡.某螺栓球柱节点网壳结构设计[C]//第十七届全国现代结构工程学术研讨会论文集.天津:2017.
    [6]
    El-Sheikh A L.Numerical snalysis of space trusses with flexible member-end joints[J].International Journal of Space Structures,1993,8(3):189-197.DOI: 10.1177/026635119300800305.
    [7]
    Yu Z C,Dong J P,Li H J,et al.Effect of joint stiffness on load-carrying capacity of three-way single-layer reticulated dome[J].Spatial Structures,2021,27(1):82-96,81.
    [8]
    尹晨光.空间钢结构新型复式球节点性能分析与试验研究[D].南京:东南大学,2016.
    [9]
    柯嘉.碗式半刚性节点性能及单层球面网壳稳定性研究[D].哈尔滨:哈尔滨工业大学,2009.
    [10]
    蔡健,王永琦,陈庆军,等.一种新型单层网壳节点的力学性能研究[J].西南交通大学学报,2019,54(1):145-153.
    [11]
    金跃东,赵阳,汪儒灏,等.矩形钢管单层网壳预埋螺栓装配式节点及其受弯性能试验研究[J].建筑结构学报,2019,40(2):153-160.
    [12]
    中华人民共和国国家质量监督检验检疫总局.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1—2010[S].北京:中国标准出版社,2011.
    [13]
    黄海,汪贵临,郭坤睿,等.某钢结构工程复杂节点模型试验研究[J].建筑结构,2016,46(增刊2):383-386.
    [14]
    马会环,范峰,柯嘉,等.网架网壳结构半刚性节点试验研究[J].建筑结构学报,2010,31(11):65-71

    ,118.
    [15]
    Vatin N,Bagautdinov R,Andreev K.Advanced method for semi-rigid joints design[J].Applied Mechanics and Materials,2015,725-726:710-715.DOI: 10.4028/www.scientific.net/amm.725-726.710.
    [16]
    Loo W Y,Quenneville P,Chouw N.A new type of symmetric slip-friction connector[J].Journal of Constructional Steel Research,2014,94:11-22.
  • Relative Articles

    [1]Ailin Zhang, Lan Tao, Xinxia Li, Yanxia Zhang. Research on Refined Installation Management of Fully Dry-Connected Prefabricated Slab Based on BIM+3D Laser Scanning Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(3): 43-50. doi: 10.13206/j.gjgS23012101
    [2]NI Ming, LUO Huijian, GUAN Lei, WU Debao, XU Siwei. Application of 3D Laser Scanning Technology in Large-Scale Soccer Field Engineering[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(12): 24-30. doi: 10.13206/j.gjgS22071601
  • Cited by

    Periodical cited type(2)

    1. 莫永春. 预应力加载方式对系杆拱桥的受力影响分析. 价值工程. 2024(03): 78-80 .
    2. 姚志军,杜恒,杨涛. 基于三维激光扫描的钢箱系杆拱桥施工全息质量控制关键技术研究. 建筑施工. 2024(05): 802-804 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-01010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.4 %FULLTEXT: 10.4 %META: 84.1 %META: 84.1 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %其他: 1.6 %其他: 1.6 %Clemmons: 0.3 %Clemmons: 0.3 %Gwynn Oak: 0.5 %Gwynn Oak: 0.5 %Hamilton: 0.5 %Hamilton: 0.5 %State College: 0.3 %State College: 0.3 %Valencia: 0.8 %Valencia: 0.8 %Wixom: 0.3 %Wixom: 0.3 %上海: 2.7 %上海: 2.7 %东莞: 0.8 %东莞: 0.8 %临沧: 0.3 %临沧: 0.3 %休斯顿: 0.3 %休斯顿: 0.3 %兰州: 0.3 %兰州: 0.3 %勿加泗: 0.5 %勿加泗: 0.5 %北京: 1.4 %北京: 1.4 %十堰: 0.3 %十堰: 0.3 %南京: 0.8 %南京: 0.8 %南通: 0.8 %南通: 0.8 %卡尼: 0.8 %卡尼: 0.8 %厦门: 0.3 %厦门: 0.3 %合肥: 0.5 %合肥: 0.5 %嘉兴: 1.1 %嘉兴: 1.1 %圣路易斯: 0.3 %圣路易斯: 0.3 %多特蒙德: 0.3 %多特蒙德: 0.3 %大连: 0.3 %大连: 0.3 %天津: 3.3 %天津: 3.3 %奥德马尔: 0.3 %奥德马尔: 0.3 %宣城: 0.8 %宣城: 0.8 %密蘇里城: 0.8 %密蘇里城: 0.8 %巴黎: 0.5 %巴黎: 0.5 %布劳利: 0.5 %布劳利: 0.5 %常州: 1.9 %常州: 1.9 %常德: 0.3 %常德: 0.3 %平顶山: 0.3 %平顶山: 0.3 %广州: 0.5 %广州: 0.5 %弗里霍尔德: 0.8 %弗里霍尔德: 0.8 %张家口: 3.3 %张家口: 3.3 %成都: 1.1 %成都: 1.1 %扬州: 1.9 %扬州: 1.9 %拉斯维加斯: 0.3 %拉斯维加斯: 0.3 %昆明: 0.5 %昆明: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.9 %杭州: 1.9 %查尔斯顿: 0.5 %查尔斯顿: 0.5 %格兰茨帕斯: 0.5 %格兰茨帕斯: 0.5 %格里利: 1.4 %格里利: 1.4 %桂林: 0.3 %桂林: 0.3 %森尼韦尔: 0.8 %森尼韦尔: 0.8 %武汉: 0.8 %武汉: 0.8 %沈阳: 1.1 %沈阳: 1.1 %温州: 0.8 %温州: 0.8 %湘潭: 0.3 %湘潭: 0.3 %漯河: 7.1 %漯河: 7.1 %石家庄: 0.5 %石家庄: 0.5 %纳苏县: 0.3 %纳苏县: 0.3 %自贡: 0.5 %自贡: 0.5 %艾卜哈: 0.8 %艾卜哈: 0.8 %芒廷维尤: 6.6 %芒廷维尤: 6.6 %衢州: 0.3 %衢州: 0.3 %西宁: 31.0 %西宁: 31.0 %运城: 0.3 %运城: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.5 %郑州: 0.5 %重庆: 0.3 %重庆: 0.3 %长沙: 0.5 %长沙: 0.5 %其他其他ClemmonsGwynn OakHamiltonState CollegeValenciaWixom上海东莞临沧休斯顿兰州勿加泗北京十堰南京南通卡尼厦门合肥嘉兴圣路易斯多特蒙德大连天津奥德马尔宣城密蘇里城巴黎布劳利常州常德平顶山广州弗里霍尔德张家口成都扬州拉斯维加斯昆明晋城朝阳杭州查尔斯顿格兰茨帕斯格里利桂林森尼韦尔武汉沈阳温州湘潭漯河石家庄纳苏县自贡艾卜哈芒廷维尤衢州西宁运城邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (198) PDF downloads(17) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return