ZHOU Jia, TONG Gen-shu. Flexural-Torsional Buckling Capacity of Beam-Columns with H-Section[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(10): 1-23. doi: 10.13206/j.gjgS22041701
Citation: ZHOU Jia, TONG Gen-shu. Flexural-Torsional Buckling Capacity of Beam-Columns with H-Section[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(10): 1-23. doi: 10.13206/j.gjgS22041701

Flexural-Torsional Buckling Capacity of Beam-Columns with H-Section

doi: 10.13206/j.gjgS22041701
  • Received Date: 2022-04-17
    Available Online: 2023-02-06
  • A theoretical study is carried out for the flexural-torsional buckling capacity of beam-columns with H-section. The main works and developments are as follows: 1)Comparisons are carried out between the formulae used in the codes of GB 50017—2017, AISC LRFD 2016, Eurocode 3 part 1-1 and the formulae derived in the flexural-torsional theory, possible improvements are pointed out. 2)Second-order analysis is carried out for the beam-columns with initial deflection and initial twisting, after introducing a specific relation between the initial deflection and initial twisting, simple expressions are obtained for the lateral displacement, twisting angle, lateral bending moments and bi-moments. 3)Plastic interactive relations are obtained for the axial force and bending moments about the strong axis and about the weak axis respectively. Fitting curves with good accuracy are provided for interaction equations of axial force-bending moments about the strong axis and about the weak axis. For the general cases of axial force and biaxial bending moments, exact analysis is carried out for the state of spatial plastic hinges and an approximate interactive equation for biaxial bending under a given axial force is also proposed. The effect of bi-moment is incorporated into the proposed equation. 4)Based on the well-accepted and codified column strength reduction factor, the equivalent initial out-of-plane deflections are obtained by taking the buckling strength of the column about the weak axis as a plastic hinge state under the axial force and the amplified bending moment due to the second order effect and initial deflection, this equivalent initial deflection includes the effect of residual stress, initial deflection and the additional deflection increment due to plasticity development. 5)Introducing this equivalent initial deflection into the second-order bending moment about the weak axis and into the bi-moment, together with the second-order in-plane bending moment, they are substituted into the spatial interactive equation of the axial force and biaxial bending moments, the interactive equation of beam-column is derived for flexural-torsional buckling. But this is an upper bound solution of the interactive equation because the process of elastic-plastic development has not been included. After amplifying the second order in-plane bending moment, and further amplifying the out-of-plane bending moments and bi-moment to consider the elastic-plastic development, the obtained equation is applicable. A series of curves are provided to show the interaction curves, the curves are close to the interactive relation of strength when the slenderness is small, and the curves are close to the interactive relation for elastic flexural-torsional buckling when the slenderness is large. Comparison shows that the current formula in GB 50017-2017 is on the safe side. The paper proposes also a new formula based on the observation of the derived curves, and lying between the strength interaction curves and the elastic buckling interaction curves.
  • [1]
    中华人民共和国住房和城乡建设部.钢结构设计标准:GB50017—2017[S].北京:中国建筑工业出版社,2018.
    [1]
    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of steel structures:GB50017-2017[S]. Beijing:China Architecture and Building Press,2018.(in Chinese)
    [2]
    陈绍蕃.钢结构设计原理[M]. 4版.北京:科学出版社,2016.
    [2]
    Chen S F. Principles for design of Steel Structures[M]. 4 th ed. Bejing:Science Press,2016.(in Chinese)
    [3]
    AISC. Specification for structural steel buildings:ANSI/AISC 360-16[S]. Chicago:American Institute of Steel Construction,2016.
    [3]
    AISC. Specification for structural steel buildings:ANSI/AISC 360-16[S]. Chicago:American Institute of Steel Construction,2016.
    [4]
    AISC.Specification for structural steel buildings:ANSI/AISC 360-05[S]. Chicago:American Institute of Steel Construction,2016.
    [4]
    AISC. Specification for structural steel buildings:ANSI/AISC 360-05[S]. Chicago:American Institute of Steel Construction,2016.
    [5]
    European Committee for Standardization. Eurocode 3:Design of steel structures-part 1-1:general rules and rules for buildings:EN1993-1-1[S]. 2005.
    [5]
    European Committee for Standardization. Eurocode 3:Design of steel structures-part 1-1:general rules and rules for buildings:EN 1993-1-1[S]. 2005.
    [6]
    Tong G S. Out-of-plane stability of steel structures[M]. 2nd ed. Beijing:China Architecture and Building Press,2013.(in Chinese)
    [6]
    童根树.钢结构的平面外稳定[M]. 2版.北京:中国建筑工业出版社,2013.
    [7]
    Architectural Institute of Japan. Recommendation for limit state design of steel strucutres[M]. Tokyo:The Japanese Architecture Center,2002.
    [7]
    日本建筑学会.钢构造限界状态设计指针·同解说[M].东京:日本建筑中心,2002.
    [8]
    童根树.钢结构的平面内稳定[M]. 2版.北京:中国建筑工业出版社,2015.
    [8]
    Tong G S. In-plane stability of steel structures[M]. 2nd ed.Beijing:China Architecture and Building Press,2015.(in Chinese)
  • Relative Articles

    [1]Dun Liang, Shenggang Fan, Ganping Shu, Baofeng Zheng. Research Progress on Various Buckling Performance of Cold-Formed Thin-Walled Stainless Steel Members with Lipped C-Section[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 1-9. doi: 10.13206/j.gjgS24092003
    [2]Mengfei Zhu, Ho-Cheung Ho, Hao Jin, Kwok-Fai Chung. Experimental Investigation into the Axial Compression of Welded Stocky Columns of Q690 and Q960 High Strength Steel[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(5): 49-56. doi: 10.13206/j.gjgS24050107
    [3]Genshu Tong. How to Consider Dynamic Elastic-Plastic Stability Due to Earthquake[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(3): 51-53. doi: 10.13206/j.gjgS22102815
    [4]TONG Genshu. Relation of Period and Buckling Factor: Limiting Second-Order Effect Through Period[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(2): 41-43. doi: 10.13206/j.gjgS22092815
    [5]Wenfu Zhang, Feng Ma, Kaijie Zhu, Bin Huang. Theoritical Study of Flexural-Torsional Buckling of Biaxial Symmetric Dumbbell-Shaped CFST Arches Based on Plate-Beam Theory[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(2): 13-21. doi: 10.13206/j.gjgS21090401
    [6]TONG Ji, TONG Gen-shu. Flexural-Torsional Buckling of Concrete-Filled Multicellular Steel Tube Walls[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(11): 1-23. doi: 10.13206/j.gjgS22070401
    [7]Haixiao Chen, Genshu Tong. Flexural-Torsional Capacity of Beam-Columns Beam-Columns with Box Section[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(9): 30-55. doi: 10.13206/j.gjgS22032603
    [8]Genshu Tong. RATIONAL DESIGN OF CRANE RUNWAY GIRDERS[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 65-73. doi: 10.13206/j.gjgSE20020401
    [9]Lijun Wang. Design of axial compression member[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(4): 39-49. doi: 10.13206/j.gjgS20041302
    [10]Lijun Wang. Design of Flexural Members[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(6): 55-64. doi: 10.13206/j.gjgS20052507
    [11]Lijun Wang. TORSION AND FLEXURE BUCKLING OF CENTRALLY LOADED MEMBERS[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 37-64. doi: 10.13206/j.gjgS19112603
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.7 %FULLTEXT: 15.7 %META: 74.5 %META: 74.5 %PDF: 9.8 %PDF: 9.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.7 %其他: 15.7 %其他: 0.5 %其他: 0.5 %China: 0.5 %China: 0.5 %上海: 2.7 %上海: 2.7 %东莞: 0.2 %东莞: 0.2 %丹东: 0.2 %丹东: 0.2 %乌鲁木齐: 0.5 %乌鲁木齐: 0.5 %九江: 0.2 %九江: 0.2 %勿加泗: 0.5 %勿加泗: 0.5 %北京: 5.0 %北京: 5.0 %十堰: 0.2 %十堰: 0.2 %南京: 0.7 %南京: 0.7 %合肥: 0.5 %合肥: 0.5 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %唐山: 0.5 %唐山: 0.5 %大同: 0.2 %大同: 0.2 %大理: 0.2 %大理: 0.2 %天津: 0.7 %天津: 0.7 %太原: 1.8 %太原: 1.8 %宁波: 0.5 %宁波: 0.5 %安康: 0.5 %安康: 0.5 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.9 %广州: 0.9 %廊坊: 0.5 %廊坊: 0.5 %张家口: 2.5 %张家口: 2.5 %成都: 1.8 %成都: 1.8 %扬州: 0.5 %扬州: 0.5 %新乡: 0.5 %新乡: 0.5 %昆明: 0.9 %昆明: 0.9 %晋城: 0.5 %晋城: 0.5 %杭州: 1.8 %杭州: 1.8 %梧州: 0.2 %梧州: 0.2 %武威: 0.7 %武威: 0.7 %武汉: 1.4 %武汉: 1.4 %沈阳: 0.7 %沈阳: 0.7 %济南: 1.6 %济南: 1.6 %济宁: 0.2 %济宁: 0.2 %海口: 0.7 %海口: 0.7 %深圳: 0.5 %深圳: 0.5 %温州: 0.2 %温州: 0.2 %漯河: 0.5 %漯河: 0.5 %石家庄: 1.8 %石家庄: 1.8 %福州: 0.5 %福州: 0.5 %绍兴: 0.2 %绍兴: 0.2 %聊城: 0.2 %聊城: 0.2 %芒廷维尤: 4.3 %芒廷维尤: 4.3 %芝加哥: 0.2 %芝加哥: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 38.9 %西宁: 38.9 %西安: 0.5 %西安: 0.5 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %郑州: 0.9 %郑州: 0.9 %长春: 0.2 %长春: 0.2 %长沙: 1.1 %长沙: 1.1 %长治: 0.2 %长治: 0.2 %阜阳: 0.2 %阜阳: 0.2 %青岛: 0.7 %青岛: 0.7 %其他其他China上海东莞丹东乌鲁木齐九江勿加泗北京十堰南京合肥咸阳哈尔滨唐山大同大理天津太原宁波安康宣城常州常德广州廊坊张家口成都扬州新乡昆明晋城杭州梧州武威武汉沈阳济南济宁海口深圳温州漯河石家庄福州绍兴聊城芒廷维尤芝加哥衢州西宁西安西雅图贵阳运城郑州长春长沙长治阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (327) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return