Teng Wang, Huikang Feng, Wentao Qiao, Jizhi Su, Lihuan Wang. Study on Flexural Capacity of Profiled Steel Sheet-Polyurethane Sandwich Slabs[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(8): 9-16. doi: 10.13206/j.gjgS22031502
Citation: Teng Wang, Huikang Feng, Wentao Qiao, Jizhi Su, Lihuan Wang. Study on Flexural Capacity of Profiled Steel Sheet-Polyurethane Sandwich Slabs[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(8): 9-16. doi: 10.13206/j.gjgS22031502

Study on Flexural Capacity of Profiled Steel Sheet-Polyurethane Sandwich Slabs

doi: 10.13206/j.gjgS22031502
  • Received Date: 2022-03-15
    Available Online: 2022-10-28
  • The metal-faced sandwich panel has been used in the envelope structure for its advantages of thermal insulation, noise reduction, light weight and high assembly efficiency. Based on the structure of metal sandwich panels, a new type of profiled steel sheet and polyurethane sandwich slab(PSSPSS) was proposed. In order to study the flexural capacity of PSSPSS, two-point symmetric load static test was carried out on the slab. Based on the experimental results, the finite element analysis model of PSSPSS was proposed and verified, and the parameters of the channel steel slab thickness, profiled steel sheet thickness and polyurethane density were analyzed.
    The results show that:the failure mode of sandwich slab is mainly shown as too large deflection, the maximun deflection is one forty-second of the span of the slab, and the channel steel at the middle section of the span appears distortion buckling. After the sandwich slab is bent and deformed, the channel steel reaches the yield state first, while the material properties of the compression steel plate are not fully developed. Compared with traditional metal sandwich panels, the bearing capacity and stiffness of PSSPSS are improved by 203% and 203% respectively.The thickness of slab and profiled steel sheet has significant influence on the bearing capacity and stiffness of sandwich slab, while the thickness of slab has more obvious influence on stiffness than the thickness of profiled steel sheet. the thickness of slab increases from 120 mm to 160 mm, the bearing capacity of sandwich slab increases by 87% in normal use, 63% in ultimate bearing capacity and 88% in stiffness. the thickness of steel sheet increases from 1 mm to 3 mm, the bearing capacity of sandwich slab increases by 59% in normal use and 84% in ultimate bearing capacity, stiffness increased by 61%.The variation of polyurethane density has little influence on the bearing capacity and stiffness of sandwich slab. the density changes from 45 kg/m3 to 90 kg/m3, the bearing capacity of sandwich slab increases by 12% in normal use, only 2% in ultimate bearing capacity, and 12% in stiffness.
  • [1]
    吕元芳, 张书亚, 张康捷, 等.装配式建筑的节能环保研究[J].建筑经济, 2021, 42(增刊1):186-188.
    [2]
    李明富, 吴海亮, 刘钟, 等.建筑用金属面夹芯板力学性能研究现状[J].建筑结构, 2020, 50(增刊1):617-623.
    [3]
    王海忠.夹芯板的冷弯薄壁型钢面层板在泡沫芯层支承下的屈曲性能研究[D].西安:西安建筑科技大学, 2001.
    [4]
    查晓雄, 秦培成, 余敏.金属面夹芯板均布面荷载作用下挠度计算公式的研究[C]//中国绝热隔音材料协会年会论文集.海口:2008.
    [5]
    余敏, 查晓雄, 阳松, 等.聚氨酯、挤塑夹芯板力学性能的有限元分析[J].哈尔滨工业大学学报, 2008, 40(12):1914-1918.
    [6]
    宋瑞强, 查晓雄, 邹杰.岩棉夹芯板力学性能的有限元分析[J].工业建筑, 2008, 38(增刊1):479-482.
    [7]
    宋新武.金属面夹芯板统一理论及夹芯板防火性能研究[D].哈尔滨:哈尔滨工业大学, 2010.
    [8]
    吴晔, 陈莉, 余丽, 等.聚氨酯弹性体夹芯板的屈曲性能研究[J].南昌工程学院学报, 2017, 36(4):10-12.
    [9]
    全国钢标准化技术委员会.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S].北京:中国标准出版社, 2010.
    [10]
    全国塑料制品标准化技术委员会.建筑绝热用硬质聚氨酯泡沫塑料:GB/T 21558-2008[S].北京:中国标准出版社, 2008.
    [11]
    全国塑料制品标准化技术委员会.硬质泡沫塑料压缩性能的测定:GB/T 8813-2020[S].北京:中国标准出版社, 2020.
    [12]
    秦培成, 查晓雄, 于航.聚氨酯硬质泡沫材料本构研究及其在夹芯板中的应用[J].工业建筑, 2008, 38(4):77-81.
    [13]
    查晓雄.建筑用绝热夹芯板结构[M].北京:科学出版社, 2011.
    [14]
    全国绝热材料标准化技术委员会.建筑用金属面绝热夹芯板:GB/T 23932-2009[S].北京:中国标准出版社, 2009.
    [15]
    全国纤维增强塑料标准化技术委员会.夹层结构弯曲性能试验方法:GB/T 1456-2005[S].北京:中国标准出版社, 2005.
  • Relative Articles

    [1]Quanwei Liu, Lele Sun, Shoujie Ye, Peijun Wang. Numerical Analysis on Mechanical Properties of Bolted Beam-SHS Column Joints Strengthened by H-Steel[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 46-55. doi: 10.13206/j.gjgS23111501
    [2]Zhenming Chen, Peng Wang, Minfang Wan, Bing Lin. Engineering Practice of Steel Structure Intelligent Manufacturing Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 80-86. doi: 10.13206/j.gjgS24083025
    [3]Xianshun Li, Kai Zhang. Comparative Study on Fireproofing Design of Steel Structures in Petrochemical Industry Between Chinese and American Standards[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 42-47. doi: 10.13206/j.gjgS23041001
    [4]Shuxin Liu, Yongqian Zhang, Yuan Liu, Hongpeng Sun. Status and Prospect of Boiler Steel Structure Technology Development[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 56-62. doi: 10.13206/j.gjgS24101036
    [5]Xiaoshan Gu. Development and Practice of Steel Structure Technology for Industrial Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 40-45. doi: 10.13206/j.gjgS24101228
    [6]Jiping Hao, Shaofan Chen, Junfen Yang. Further Discussion on the Development of Steel Structure Theory and the Evolution of Steel Structure Textbooks[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 77-83. doi: 10.13206/j.gjgS24092801
    [7]Bingchuan Tang, Jiepeng Liu. Development of Intelligent Manufacturing Technology for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 119-126. doi: 10.13206/j.gjgS24052122
    [8]Zuowei Qin, Hui Li, Dong Han, Haiqiang Jiang. Structure Optimization and Performance Analysis of Box-Type Support Joint of L-Shaped Partially Coated Steel-Concrete Composite Column[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 7-13. doi: 10.13206/j.gjgS22082301
    [9]Aizhu Zhu, Rong Leng, Zhen Yu, Zheng Li. Experimental Study and Analysis of Static Load-Bearing Performance of Hybrid Steel Girders[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(8): 11-19. doi: 10.13206/j.gjgS23053001
    [10]Genshu Tong. Design of Beam-to-Column Connection Strengthened by Cover Plates[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 55-57. doi: 10.13206/j.gjgS24031922
    [11]Wenzhong Wu. Stochastic Response and Controlling to Earthquake Wave in Compound Periodic Steel Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(12): 48-53. doi: 10.13206/j.gjgS23063004
    [12]ZHANG Jin, WANG Li-jun, YANG Lyu-lei, GONG Min-feng. Discussion and Improvement Research on Performance-Based Seismic Design Method for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 37-65. doi: 10.13206/j.gjgS22121903
    [13]HAN Ming-lan, SHI Jian-hua, SHI Zhen-hai, WANG Yan. Analysis on Seismic Properties of Embedded and Reinforced Prefabricated Connection with Cantilever Beam[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 1-12. doi: 10.13206/j.gjgS22110101
    [14]Zhaobing Ren. Nonlinear Performance Analysis of Steel Reinforced Concrete Beam Column Joints in Yinchuan Green Space Center[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(9): 8-16. doi: 10.13206/j.gjgS22022202
    [15]Meijing Liu, Shaoru Zeng, Shenggang Fan. Analysis and Design of Complex Steel Structure of High-Rising Sightseeing Tower[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 56-63. doi: 10.13206/j.gjgS20080502
    [16]Zhigang Ma, Guanghai Cui, Jing Wang, Xiaofeng Jie, Jing Li, Zao Jiang. Overall Stability Capacity Analysis of Long-Span Single-Layer Special-Shaped Shell[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(8): 28-34. doi: 10.13206/j.gjgS20060901
    [17]Huimin Fu, Bin Ma, Longgui Bu, Yong Wang, Qing Zuo, Duomin Wang, Zhenyong Guo, Wenping Wu, Jianhua Li. Structural Design of Qinghe Station[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 7-15. doi: 10.13206/j.gjgS20072302
    [18]Pang Lin, Sun Guohua, Dong Jiaying, Liao Qianwen. Analysis on the Hysteretic Behavior of Special Truss Moment Frame Connections[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(11): 14-21. doi: 10.13206/j.gjgS20081102
    [19]Fei Yin, Lu Yang, Gang Shi, Xiaolin Li. OVERVIEW OF RESEARCH PROGRESS FOR SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL STRUCTURES[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 1-25. doi: 10.13206/j.gjgSE20010805
    [20]Yinquan Yu, Fengqi Zhu, Zhe Wang. Review of the Promotion and Application of Steel Structures in Construction[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 59-69. doi: 10.13206/j.gjgSE19112602
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.7 %FULLTEXT: 12.7 %META: 84.1 %META: 84.1 %PDF: 3.2 %PDF: 3.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.9 %其他: 12.9 %其他: 0.1 %其他: 0.1 %上海: 1.8 %上海: 1.8 %东莞: 0.1 %东莞: 0.1 %北京: 3.1 %北京: 3.1 %十堰: 0.4 %十堰: 0.4 %南京: 1.1 %南京: 1.1 %南宁: 0.1 %南宁: 0.1 %南通: 1.1 %南通: 1.1 %厦门: 0.3 %厦门: 0.3 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 2.1 %哈尔滨: 2.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.6 %嘉兴: 0.6 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %多伦多: 0.1 %多伦多: 0.1 %天津: 2.2 %天津: 2.2 %太原: 0.4 %太原: 0.4 %宁波: 0.3 %宁波: 0.3 %安康: 0.1 %安康: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.3 %宣城: 0.3 %巴音郭楞: 0.3 %巴音郭楞: 0.3 %常州: 0.6 %常州: 0.6 %常德: 0.1 %常德: 0.1 %广州: 1.0 %广州: 1.0 %延安: 0.7 %延安: 0.7 %弗吉: 0.1 %弗吉: 0.1 %张家口: 3.1 %张家口: 3.1 %徐州: 0.3 %徐州: 0.3 %惠州: 0.1 %惠州: 0.1 %成都: 1.1 %成都: 1.1 %扬州: 1.8 %扬州: 1.8 %昆明: 0.4 %昆明: 0.4 %曼彻斯特: 0.1 %曼彻斯特: 0.1 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.4 %杭州: 1.4 %武汉: 1.3 %武汉: 1.3 %江门: 0.1 %江门: 0.1 %沈阳: 0.6 %沈阳: 0.6 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.4 %济南: 0.4 %济宁: 0.4 %济宁: 0.4 %深圳: 0.8 %深圳: 0.8 %温州: 0.4 %温州: 0.4 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %滨州: 0.3 %滨州: 0.3 %漯河: 6.5 %漯河: 6.5 %玉林: 0.3 %玉林: 0.3 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.1 %福州: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 5.8 %芒廷维尤: 5.8 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.6 %苏州: 0.6 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 33.1 %西宁: 33.1 %西安: 2.1 %西安: 2.1 %西雅图: 0.1 %西雅图: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 1.0 %重庆: 1.0 %长春: 0.1 %长春: 0.1 %长沙: 1.0 %长沙: 1.0 %青岛: 0.7 %青岛: 0.7 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他上海东莞北京十堰南京南宁南通厦门合肥呼和浩特哈尔滨唐山嘉兴圣彼得堡多伦多天津太原宁波安康宜春宣城巴音郭楞常州常德广州延安弗吉张家口徐州惠州成都扬州昆明曼彻斯特朝阳杭州武汉江门沈阳洛阳济南济宁深圳温州湖州湘潭滨州漯河玉林石家庄福州纽约绍兴绵阳舟山芒廷维尤芝加哥苏州衡阳襄阳西宁西安西雅图达州运城邯郸郑州重庆长春长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (324) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return