Lingxiao Zuo, Weitong Yi, Lei Zhu, Donglin Lyu, Hailin Sun. Methods for Determining Ultimate Bearing Capacity of Steel Beam-Column Joints Based on Moment-Rotation Curves[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(5): 18-27. doi: 10.13206/j.gjgS22031101
Citation: Lingxiao Zuo, Weitong Yi, Lei Zhu, Donglin Lyu, Hailin Sun. Methods for Determining Ultimate Bearing Capacity of Steel Beam-Column Joints Based on Moment-Rotation Curves[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(5): 18-27. doi: 10.13206/j.gjgS22031101

Methods for Determining Ultimate Bearing Capacity of Steel Beam-Column Joints Based on Moment-Rotation Curves

doi: 10.13206/j.gjgS22031101
  • Received Date: 2022-03-11
  • For beam-column steel joints,the moment-rotation curve is an important criterion of the ultimate bearing capacity,as well as an essential criterion for the design of joints.Generally,the moment-rotation curve of a joint has both ascending and descending range,therefore,the ultimate bearing capacity of the joint can be captured intuitively by the peak point of the curve.However,for some curve which is monotone increasing without an obvious peak point,the detemination of the ultimate bearing capacity needed to be further studied.Based on this issue,methodology of deformation limit will be discussed,in order to determine the ultimatate capacity.
    Firstly,current codes as well as corresponding researches on methods of displacement limit calculation are summarized.These methods can be classified in two types,one is through the displacement of the chord,and another is through the brace.CIDECT method belongs to the type of chord,which takes the value of chord deformation in 3% of chord diameter as the ultimate deformation limit.Lu's method,as an improvement of CIDECT method,considering the relationship of load between the deformation of 1% and 3% of chord diameter,when the load of 3% is higher than 1.5 times load of 1%,and then the value of 1.5 times load of 1% is taken as the ultimate bearing capacity,otherwise,the value of 3% is taken as the ultimate point.TEC (Twice Elastic Method) is also belongs to the type of chord,which draws a straight line that the slope is half of the initial stiffness through the origin,and the intersection between the line and the curve is the ultimate point.Yura's method belongs to the type of brace,in which the brace is regarded as a simply supported beam with uniform load,when the strain in the middle of the beam span is 4 times the yield strain of the material,it is considered to reach the limit.Secondly,in view of situation that Yura's method is not adopted in codes,a series of steel circular tubular joint tests as well as finite element analysis are carried out to verify the method.Finally,the application of methods above were explored by taking the example of joints with square steel tubular column and H-shaped beam.Four groups of tests were designed and corresponding finite element simulation was carried out.After comparing the experimental and simulation results which verified the reliability of the simulation,the ultimate rotation angles of the above different methods are evaluated based on the finite element simulation results.
    Results indicated that the application of Yura's method for joints of steel tubular column and H-shaped beam is feasible.The results obtained by Lu's method are relatively conservative and the operation is complicated.TEC method requires complete moment-rotation curves of joints,and is also complex to operate and prone to errors,so its applicability is limited.CIDECT and Yura's methods are relatively easy to operate,as the ultimate deformation can be estimated as long as the diameter of the chord or brace is determined,and the difference of the ultimate rotation obtained by these two methods is minor.Therefore,this research suggests to use these two methods to calculate the corresponding ultimate rotation,and take the smaller as the ultimate limit.
  • [1]
    强旭红,陈欢,姜旭,等.高强钢端板连接节点弯矩-转角曲线数学模型[J].同济大学学报(自然科学版), 2020, 48(4):471-480.
    [2]
    中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101-2015[S].北京:中国建筑工业出版社, 2015.
    [3]
    AISC. An American national standard specification for structural steel buildings:ANSI/AISC 360-10[S]. Chicago:American Institute of Steel Construction, 2010.
    [4]
    AISI. Connections for Use with the 2012 North American cold-formed steel specification[S]. Washington D C:American Iron and Steel Institute, 2012.
    [5]
    BSI. Design of composite steel and concrete structures:Eurocode 4[S]. London:British Standard Institute, 1994.
    [6]
    AISC. Cold-formed steel structures code:[S]. Sydney:Australian Institute of Steel Construction, 1988.
    [7]
    CIDECT. The strength and behaviour of statically loaded welded connections in structural hollow sections, monograph No. 6.:[S]. Corby:CIDECT, 1986.
    [8]
    Lan X Y, Chan T M, Young B. Testing, finite element analysis and design of high strength steel RHS T-joints[J]. Engineering Structures, 2021, 227.DOI: 10.1016/j.engstruct.2020.111184.
    [9]
    Cai Y C, Chan T M, Young B, Strength predictions of circular hollow section T-joints of steel grade 1100 MPa[J]. Journal of Constructional Steel Research, 2022,188.DOI: 10.1016/j.jcsr.2021.107003.
    [10]
    BSI. Guide to methods for assesing the acceptability of flaws in metallic structures:BS 7910[S]. London:British Standard Institute, 2019.
    [11]
    ASME. Rules for construction of pressure vessels:[S]. New York:American Society of Mechanical Engineers, 1998.
    [12]
    高超.基于损伤的N型钢管节点静力与滞回性能研究[D].北京:北京交通大学, 2010.
    [13]
    薛彦涛.带转换层型钢混凝土框架-核心筒混合结构试验与设计研究[D].北京:中国建筑科学研究院, 2007.
    [14]
    Lu L H,Puthli R S,Wardenier J. Ultimate deformation criteria for uniplanar connections between I-beams and RHS columns under in-plane bending[C]//Proceedings of the 4th International Offshore and Polar Engineering Conference. Osaka:1994.
    [15]
    Zhao X L,Hancock G J. T-joints in rectangular hollow sections subject to combined actions[J]. Journal of Structural Engineering, 1992, 118:2639-2640.
    [16]
    Koral R M,Mizara F A. Finite element analysis of RHS T-joints[J]. Journal of Structural Engineering, 1982, 108(9):2081-2098.
    [17]
    Yura J A,Zettlemoyer N A,Edwards I F. Ultimate Capacity equations for tubular joints[C]//Proceedings of the Annual Offshore Technology Conference.Houston:1980:3690.
    [18]
    Xu F,Chan T M,Chen J. Punching shear based design of concrete-filled CHS T-joints under in-plane bending[C]//12th International Conference on "Advances in Steel-Concrete Composite Structures" ASCCS 2018. Valencia:2018.
    [19]
    Lie S T,Li T,Shao Y B, et al. Plastic collapse load prediction of cracked circular hollow section gap K-joints under in-plane bending[J]. Marine Structures, 2016, 50:20-34.
    [20]
    Zhao X L. Deformation limit and ultimate strength of welded T-joints in cold-formed RHS sections[J]. Journal of Constructional Steel Research, 2000, 53(2):149-165.
    [21]
    Lie S T, Vipin S P, Li T. New reduction factor for cracked square hollow section T-joints under axial loading[J]. Journal of Constructional Steel Research, 2015, 112:221-227.
    [22]
    Lie S T,Yang Z M,Gho W M. Validation of BS7910-2005 failure assessment diagrams for cracked square hollow section T-, Y-and K-joints[J]. International Journal of Pressure Vessels and Piping, 2009, 86(5):335-344.
    [23]
    Wan C,Bai Y,Ding C, et al. Mechanical performance of novel steel one-sided bolted joints in shear[J]. Journal of Constructional Steel Research, 2020, 165:1-13.
    [24]
    中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社, 2018.
  • Relative Articles

    [1]Quanwei Liu, Lele Sun, Shoujie Ye, Peijun Wang. Numerical Analysis on Mechanical Properties of Bolted Beam-SHS Column Joints Strengthened by H-Steel[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 46-55. doi: 10.13206/j.gjgS23111501
    [2]Zhenming Chen, Peng Wang, Minfang Wan, Bing Lin. Engineering Practice of Steel Structure Intelligent Manufacturing Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 80-86. doi: 10.13206/j.gjgS24083025
    [3]Xianshun Li, Kai Zhang. Comparative Study on Fireproofing Design of Steel Structures in Petrochemical Industry Between Chinese and American Standards[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 42-47. doi: 10.13206/j.gjgS23041001
    [4]Shuxin Liu, Yongqian Zhang, Yuan Liu, Hongpeng Sun. Status and Prospect of Boiler Steel Structure Technology Development[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 56-62. doi: 10.13206/j.gjgS24101036
    [5]Xiaoshan Gu. Development and Practice of Steel Structure Technology for Industrial Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 40-45. doi: 10.13206/j.gjgS24101228
    [6]Jiping Hao, Shaofan Chen, Junfen Yang. Further Discussion on the Development of Steel Structure Theory and the Evolution of Steel Structure Textbooks[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 77-83. doi: 10.13206/j.gjgS24092801
    [7]Bingchuan Tang, Jiepeng Liu. Development of Intelligent Manufacturing Technology for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 119-126. doi: 10.13206/j.gjgS24052122
    [8]Zuowei Qin, Hui Li, Dong Han, Haiqiang Jiang. Structure Optimization and Performance Analysis of Box-Type Support Joint of L-Shaped Partially Coated Steel-Concrete Composite Column[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 7-13. doi: 10.13206/j.gjgS22082301
    [9]Aizhu Zhu, Rong Leng, Zhen Yu, Zheng Li. Experimental Study and Analysis of Static Load-Bearing Performance of Hybrid Steel Girders[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(8): 11-19. doi: 10.13206/j.gjgS23053001
    [10]Genshu Tong. Design of Beam-to-Column Connection Strengthened by Cover Plates[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 55-57. doi: 10.13206/j.gjgS24031922
    [11]Wenzhong Wu. Stochastic Response and Controlling to Earthquake Wave in Compound Periodic Steel Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(12): 48-53. doi: 10.13206/j.gjgS23063004
    [12]ZHANG Jin, WANG Li-jun, YANG Lyu-lei, GONG Min-feng. Discussion and Improvement Research on Performance-Based Seismic Design Method for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 37-65. doi: 10.13206/j.gjgS22121903
    [13]HAN Ming-lan, SHI Jian-hua, SHI Zhen-hai, WANG Yan. Analysis on Seismic Properties of Embedded and Reinforced Prefabricated Connection with Cantilever Beam[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 1-12. doi: 10.13206/j.gjgS22110101
    [14]Zhaobing Ren. Nonlinear Performance Analysis of Steel Reinforced Concrete Beam Column Joints in Yinchuan Green Space Center[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(9): 8-16. doi: 10.13206/j.gjgS22022202
    [15]Meijing Liu, Shaoru Zeng, Shenggang Fan. Analysis and Design of Complex Steel Structure of High-Rising Sightseeing Tower[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 56-63. doi: 10.13206/j.gjgS20080502
    [16]Zhigang Ma, Guanghai Cui, Jing Wang, Xiaofeng Jie, Jing Li, Zao Jiang. Overall Stability Capacity Analysis of Long-Span Single-Layer Special-Shaped Shell[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(8): 28-34. doi: 10.13206/j.gjgS20060901
    [17]Huimin Fu, Bin Ma, Longgui Bu, Yong Wang, Qing Zuo, Duomin Wang, Zhenyong Guo, Wenping Wu, Jianhua Li. Structural Design of Qinghe Station[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 7-15. doi: 10.13206/j.gjgS20072302
    [18]Pang Lin, Sun Guohua, Dong Jiaying, Liao Qianwen. Analysis on the Hysteretic Behavior of Special Truss Moment Frame Connections[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(11): 14-21. doi: 10.13206/j.gjgS20081102
    [19]Fei Yin, Lu Yang, Gang Shi, Xiaolin Li. OVERVIEW OF RESEARCH PROGRESS FOR SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL STRUCTURES[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 1-25. doi: 10.13206/j.gjgSE20010805
    [20]Yinquan Yu, Fengqi Zhu, Zhe Wang. Review of the Promotion and Application of Steel Structures in Construction[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 59-69. doi: 10.13206/j.gjgSE19112602
  • Cited by

    Periodical cited type(2)

    1. 潘天童,祝磊,孙海林,田春雨,王美,尹飞. 预埋钢管钢筋混凝土柱-钢梁装配式节点力学性能试验研究. 施工技术(中英文). 2024(20): 159-166 .
    2. 宋晓燕,钟炜辉,孙伟,陈昊,王洪臣,韩曙华. 梁–H型柱弱轴刚性拼接的子结构抗倒塌性能试验研究. 工程科学与技术. 2023(06): 120-131 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.7 %FULLTEXT: 12.7 %META: 84.1 %META: 84.1 %PDF: 3.2 %PDF: 3.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.9 %其他: 12.9 %其他: 0.1 %其他: 0.1 %上海: 1.8 %上海: 1.8 %东莞: 0.1 %东莞: 0.1 %北京: 3.1 %北京: 3.1 %十堰: 0.4 %十堰: 0.4 %南京: 1.1 %南京: 1.1 %南宁: 0.1 %南宁: 0.1 %南通: 1.1 %南通: 1.1 %厦门: 0.3 %厦门: 0.3 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 2.1 %哈尔滨: 2.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.6 %嘉兴: 0.6 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %多伦多: 0.1 %多伦多: 0.1 %天津: 2.2 %天津: 2.2 %太原: 0.4 %太原: 0.4 %宁波: 0.3 %宁波: 0.3 %安康: 0.1 %安康: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.3 %宣城: 0.3 %巴音郭楞: 0.3 %巴音郭楞: 0.3 %常州: 0.6 %常州: 0.6 %常德: 0.1 %常德: 0.1 %广州: 1.0 %广州: 1.0 %延安: 0.7 %延安: 0.7 %弗吉: 0.1 %弗吉: 0.1 %张家口: 3.1 %张家口: 3.1 %徐州: 0.3 %徐州: 0.3 %惠州: 0.1 %惠州: 0.1 %成都: 1.1 %成都: 1.1 %扬州: 1.8 %扬州: 1.8 %昆明: 0.4 %昆明: 0.4 %曼彻斯特: 0.1 %曼彻斯特: 0.1 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.4 %杭州: 1.4 %武汉: 1.3 %武汉: 1.3 %江门: 0.1 %江门: 0.1 %沈阳: 0.6 %沈阳: 0.6 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.4 %济南: 0.4 %济宁: 0.4 %济宁: 0.4 %深圳: 0.8 %深圳: 0.8 %温州: 0.4 %温州: 0.4 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %滨州: 0.3 %滨州: 0.3 %漯河: 6.5 %漯河: 6.5 %玉林: 0.3 %玉林: 0.3 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.1 %福州: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 5.8 %芒廷维尤: 5.8 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.6 %苏州: 0.6 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 33.1 %西宁: 33.1 %西安: 2.1 %西安: 2.1 %西雅图: 0.1 %西雅图: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 1.0 %重庆: 1.0 %长春: 0.1 %长春: 0.1 %长沙: 1.0 %长沙: 1.0 %青岛: 0.7 %青岛: 0.7 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他上海东莞北京十堰南京南宁南通厦门合肥呼和浩特哈尔滨唐山嘉兴圣彼得堡多伦多天津太原宁波安康宜春宣城巴音郭楞常州常德广州延安弗吉张家口徐州惠州成都扬州昆明曼彻斯特朝阳杭州武汉江门沈阳洛阳济南济宁深圳温州湖州湘潭滨州漯河玉林石家庄福州纽约绍兴绵阳舟山芒廷维尤芝加哥苏州衡阳襄阳西宁西安西雅图达州运城邯郸郑州重庆长春长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (604) PDF downloads(24) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return