Volume 37 Issue 3
May  2022
Turn off MathJax
Article Contents
Wenjie Zhao, Jingyi Zhang, Chao Hou. Mechanical Performance Analysis of Concrete Filled Steel Tubular K-joints Subjected to Random Local Corrosion[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(3): 10-19. doi: 10.13206/j.gjgS21100801
Citation: Wenjie Zhao, Jingyi Zhang, Chao Hou. Mechanical Performance Analysis of Concrete Filled Steel Tubular K-joints Subjected to Random Local Corrosion[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(3): 10-19. doi: 10.13206/j.gjgS21100801

Mechanical Performance Analysis of Concrete Filled Steel Tubular K-joints Subjected to Random Local Corrosion

doi: 10.13206/j.gjgS21100801
  • Received Date: 2021-10-08
    Available Online: 2022-05-27
  • Concrete filled steel tube(CFST) composite truss structures have superior structural performance and economic advantages due to the clear force transmission and excellent integrity. These structures have been widely used in large-scale infrastructures that serve in corrosive environments, such as cross-sea bridges, coastal towers, and offshore platforms. In such structures, the main bearing members and key connecting joints are affected by corrosion and sustained loads, which is a severe challenge to the safety and reliability of the structure. In practice, randomly distributed local corrosion normally occurs on the surface of steel. Due to the limitations of test facilities and numerical simulation technology, the research on CFST K-joints with random local corrosion is still limited, which restricts the understanding of the life-cycle performance and the establishment of scientific design methods for those structures. Thus, this paper aims to study the full-range performance of CFST K-joints subjected to random local corrosion and sustained load.
    A detailed finite element analysis(FEA) modelling was presented to study the performance of CFST K-joints under random local corrosion and sustained load, which could take the random local corrosion of the outer steel tube and the complex time-dependent effects of the nonlinear material confinement into consideration. Based on the distribution trend of random local corrosion for steel structure in actual ocean environment, the simulation of random local corrosion on the surface of chord and brace was realized by combining Python and ABAQUS simulations, which can generate random pit distribution, identify corrosion elements and automatically mesh on the pitting corrosion area. In addition, the long-term characteristics of the core concrete and the time-dependent deterioration of nonlinear steel-concrete composite action are considered in the model. The established model was validated against reported test data and then used for further analysis, including the possible failure modes, the full-range load-deformation relationships, the residual ultimate strength, and the influence law of important parameters such as corrosion type(uniform distribution or random local distribution), volume loss rate, etc. The key parameters affecting the performance of CFST K-joints with random local corrosion were systematically evaluated, including the volume loss rate, the material properties, the diameter-ratio between chord and brace, the chord member diameter-thickness ratio, etc. Finally, simplified calculation methods for the residual strength of CFST K-joints were proposed based on parametric analysis. The accuracy of the formula was verified by the finite element results.
    The results show that the failure mode of CFST K-joints with random local corrosion is mainly the local buckling of the compression brace, while the stress concentration tends to occur in the pitting corrosion concentrated area that leads to the local buckling failure. Due to the concrete infill in the chord, the mechanical performance of the joints is improved. Compared with uniform corrosion, local corrosion has a more significant effect on the performance of CFST K-joints while the random distribution of local corrosion further reduces the bearing capacity of CFST K-joints. When the volume loss rate remains constant, the ultimate joint capacity with random local corrosion is found about 13.2% lower than that with uniform corrosion; the volume loss rate of brace controls the ultimate strength of CFST K-joints.
  • loading
  • [1]
    韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学出版社, 2016.
    [2]
    Han L H, Hou C, Wang Q L.Square concrete filled steel tubular (CFST) members under loading and chloride corrosion:experiments[J].Journal of Constructional Steel Research, 2012, 71:11-25.
    [3]
    Hou C, Han L H, Zhao X L.Full-range analysis on square CFST stub columns and beams under loading and chloride corrosion[J].Thin-walled Structures, 2013, 68:50-64.
    [4]
    Han L H, Hou C, Hua Y X.Concrete-filled steel tubes subjected to axial compression:Life-cycle based performance[J].Journal of Constructional Steel Research, 2020.DOI: 10.1016/j.jcsr.2020.106063.
    [5]
    王庆利, 冯立明, 屈绍娥.圆钢管混凝土轴压短柱在长期荷载-氯盐腐蚀耦合作用下的试验研究[J].土木工程学报, 2015, 48(增刊1):48-52.
    [6]
    王庆利, 李清林, 屈绍娥.长期荷载下圆钢管混凝土梁的耐腐蚀性能试验研究[J].建筑结构学报, 2015, 36(增刊2):50-55.
    [7]
    Yuan F, Chen M C, Huang H, et al.Circular concrete filled steel tubular columns under cyclic load and acid rain attack:test simulation[J].Thin-walled Structures, 2018, 122:90-101.
    [8]
    Gao S, Guo L H, Zhang S M, et al.Performance degradation of circular thin-walled CFST stub columns in high-latitude offshore region[J].Thin-walled Structures, 2020.DOI: 10.1016/j.tws.2020.106906.
    [9]
    Lyv X T, Zhang L Q, Zhang T, et al.Prediction and analysis of ultimate bearing capacity of square CFST long column under eccentric compression after acid rain corrosion[J].Materials, 2021, 14(10).DOI: 10.3390/ma14102568.
    [10]
    Sheng J, Xia J W.Effect of simulated pitting corrosion on the tensile properties of steel[J].Construction and Building Materials, 2017, 131:90-100.
    [11]
    Yuan Y, Yang Y, Zheng H, et al.Experimental study on generalized constitutive model of hull structural plate with multi-parameter pitting corrosion[J].Ocean Engineering, 2018, 170:407-415.
    [12]
    Yuan Y, Zhang N, Liu H Q, et al.Influence of random pit corrosion on axial stiffness of thin-walled circular tubes[J].Structures, 2020, 28:2596-2604.
    [13]
    Zhao Z W, Zheng C Y, Zhang J N, et al.Influence of random pitting corrosion on moment capacity of thin-walled circular tubes subjected to compression force[J].International Journal of Pressure Vessels and Piping, 2021.DOI: 10.1016/j.ijpvp.2020.104260.
    [14]
    Wang R H, Shenoi R A.Experimental and numerical study on ultimate strength of steel tubular members with pitting corrosion damage[J].Marine Structures, 2019, 64:124-137.
    [15]
    Wang R H, Guo H C, Shenoi R A.Experimental and numerical study of localized pitting effect on compressive behavior of tubular members[J].Marine Structures, 2020.DOI: 10.1016/j.marstruc.2020.102784.
    [16]
    Chang X, Fu L, Zhao H B, et al..Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes[J].Thin-walled Structures, 2013, 73:273-280.
    [17]
    Ding F X, Fu L, Yu Z W.Behaviors of axially loaded square concrete-filled steel tube (CFST) Stub columns with notch in steel tube[J].Thin-walled Structures, 2017, 115:196-204.
    [18]
    Huang H J, Guo L H, Qu B, et al.Tests of circular concrete-filled steel tubular stub columns with artificial notches representing local corrosions[J].Engineering Structures, 2021.DOI: 10.1016/j.engstruct.2021.112598.
    [19]
    Saleh S, Hou C, Han L H, et al.Numerical behaviour of composite K-joints subjected to combined loading and corrosive environment[C]//Advances in Steel-Concrete Composite Structures.Valencia:University Politecnica Valencia, 2018.
    [20]
    Han L H, Li Y J, Liao F Y.Concrete-filled double skin steel tubular (CFDST) columns subjected to long-term sustained loading[J].Thin-walled Structures, 2011, 49(12):1534-1543.
    [21]
    Huang Y, Zhang Y, Liu G, et al.Ultimate strength assessment of hull structural plate with pitting corrosion damnification under biaxial compression[J].Ocean Engineering, 2010, 37:1503-1512.
    [22]
    Nakai T, Matsushita H, Yamamoto N, et al.Effect of pitting corrosion on local strength of hold frames of bulk carriers[J].Marine Structures, 2004, 17(5):403-432.
    [23]
    Huang W J, Fenu L, Chen B C, et al.Experimental study on K-joints of concrete filled steel tubular truss structures[J].Journal of Constructional Steel Research, 2015, 107:182-193.
    [24]
    Hou C, Han L H, Mu T M.Behaviour of CFDST chord to CHS brace composite K-joints:Experiments[J].Journal of Constructional Steel Research, 2017, 135:97-109.
    [25]
    Packer J A.Concrete-filled HSS connections[J].Journal of Structural Engineering, ASCE, 1995, 121(3):458-467.
    [26]
    陈绍蕃.钢结构稳定设计指南[M].北京:中国建筑工业出版社, 2004.
    [27]
    Deutsches Institüt fürNormung.Structural steelwork analysis of safety against buckling of shells:DIN 18800-4[S].Berlin:DIN, 1990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (240) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return