Enfeng Deng, Liang Zong, Yang Ding. Research on Calculated Method of Initial Lateral Stiffness of Corrugated Steel Plate Shear Walls with Openings[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(3): 1-9. doi: 10.13206/j.gjgS21100101
Citation: Enfeng Deng, Liang Zong, Yang Ding. Research on Calculated Method of Initial Lateral Stiffness of Corrugated Steel Plate Shear Walls with Openings[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(3): 1-9. doi: 10.13206/j.gjgS21100101

Research on Calculated Method of Initial Lateral Stiffness of Corrugated Steel Plate Shear Walls with Openings

doi: 10.13206/j.gjgS21100101
  • Received Date: 2021-10-01
    Available Online: 2022-05-27
  • Corrugated steel plate is widely used as lateral-force resisting component for modular steel construction(MSC). Meanwhile, openings served as windows or doors are commonplace for the corrugated steel plate shear walls(CSPSWs) in MSC for the realization of the building function. However, there is a lack of research on the lateral performance and design method on CSPSWs with openings, which hinders the promotion and application of MSC to some extent.
    Elaborate finite element model(FEM) was developed for CSPSWs with openings by general finite element software ABAQUS based on the previous cyclic tests on CSPSWs with openings, considering geometric nonlinearity, material nonlinearity and geometrical imperfection. The reliability of the FEM was verified against the test results and the failure mechanism of the specimens was revealed. It is indicated that the developed FEM can well predict the initial lateral stiffness, shear capacity and failure modes of CSPSWs with openings under low cyclic loading. Stress concentration exists in the corner regions of the opening under earthquake. It is recommended that the opening should be located off the end of the diagonal tension field to guarantee the deformation capacity and ductility of the specimen.
    The theoretical calculating model of CSPSWs with openings was established. CSPSWs with openings was equivalent as some series-parallel connected springs. The theoretical formulas for predicting the initial lateral stiffness of CSPSWs with openings were deduced and validated against the related test and numerical results. It is indicated that the proposed formulas can predict the lateral stiffness of CSPSWs with openings with well precision. Parametric analysis was conducted to reveal the influence of the thickness of the infill panel, the height of the crest of the infill corrugated steel plate and the location of the opening on the initial lateral stiffness of CSPSWs with openings. The results indicate that the location of the opening location affects the initial lateral stiffness of CSPSWs with openings significantly. The opening is suggested to be located near the outer frame to obtain higher lateral stiffness. The present study provides calculating method for initial lateral stiffness of CSPSWs with openings and the location of the openings is recommended.
  • [1]
    Gunawardena T, Mendis P.Steel modular construction and its applicability to the building industry in China[J].钢结构(中英文), 2020, 35(2):66-73.DOI: 10.13206/j.gjgSE20010802.
    [2]
    Deng E F, Zong L, Ding Y, et al.Seismic performance of mid-to-high rise modular steel construction:a critical review[J].Thin-walled Structures, 2020, 155.DOI: 10.1016/j.tws.2020.106924.
    [3]
    丁阳, 邓恩峰, 宗亮, 等.模块化集装箱建筑波纹钢板剪力墙抗震性能试验研究[J].建筑结构学报, 2018, 39(12):110-118.
    [4]
    赵秋红, 李楠, 孙军浩.波纹钢板剪力墙结构的抗侧性能分析[J].天津大学学报(自然科学与工程技术版), 2016, 49(增刊1):152-160.
    [5]
    Fereshteh E, Massood M, Abolhassan V.Experimental study on cyclic behavior of trapezoidally corrugated steel shear walls[J].Engineering Structures, 2013, 48:750-762.
    [6]
    Giriunas K, Sezen H, Dupaix R B.Evaluation, modelling, and analysis of shipping container building structures[J].Engineering Structures, 2012, 43:48-57.
    [7]
    Deng E F, Zong L, Ding Y.Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction[J].Steel and Composite Structures, 2019, 32(3):347-359.
    [8]
    Yu Y J, Chen Z H.Rigidity of corrugated plate sidewalls and its effect on the modular structural design[J].Engineering Structures, 2018, 175:191-200.
    [9]
    Bahrebar M, Kabir M Z, Zirakian T, et al.Structural performance assessment of trapezoidally-corrugated and centrally-perforated plate shear walls[J].Journal of Constructional Steel Research, 2016, 122:584-594.
    [10]
    Farzampour A, Laman J A, Mofid M.Behavior predication of corrugated steel plate shear walls with openings[J].Journal of Constructional Steel Research, 2015, 114:258-268.
    [11]
    Ding Y, Deng E F, Zong L, et al.Cyclic tests on corrugated steel plate shear walls with openings in modularized-constructions[J].Journal of Constructional Steel Research, 2017, 138:675-691.
    [12]
    中国工程建设标准化协会.集装箱模块化组合房屋技术规程:CECS 334:2013[S].北京:中国计划出版社, 2013.
    [13]
    CEN.Design of steel structures-part 1-5:plated structural elements:Eurocode 3[S].Brussels:European Committee for Standardization, 2005.
    [14]
    中华人民共和国住房和城乡建设部.钢板剪力墙技术规程:JGJ/T 380-2015[S].北京:中国建筑工业出版社, 2015.
  • Relative Articles

    [1]Ke Zou, Wei Bao, Songyan Li, Xutao Xue, Fangping Xiao, Jiaopeng Fang. Research on Seismic Performance of Semi-Rigid Steel Frames with Corrugated Steel Plate Shear Walls[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 10-20. doi: 10.13206/j.gjgS24092004
    [2]Mingliang Zhang, Hao Chen, Qiliang Wang. Study on Tensile Performance of Square Tubular Column-Column Joints of Modular Steel Structure with Bidirectional Bolt Connection[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(8): 20-28. doi: 10.13206/j.gjgS23062701
    [3]Jun Zou, Bing Shao, Zunsheng Xing, Qixiao Yu, Jiahui Cui, Huajiao Xu. Research on Seismic Performance of a Steel Frame Structure with Flat Steel Tubular Column and X-Type Brace[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 14-21. doi: 10.13206/j.gjgS23071902
    [4]Yiling Chen, Jinliang Jiang, Jingzhong Tong. Research on Lateral Stiffness of Embedded Wall Board Steel Frame Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(11): 1-9. doi: 10.13206/j.gjgS22110501
    [5]Jiansen Feng, Zexuan Sun, Yun Zou, Chengquan Wang. Finite Element Analysis of Axial Compression Behavior of Steel Tubular-Corrugated Steel Plate Confined Concrete Composite Column[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(8): 14-21. doi: 10.13206/j.gjgS23041202
    [6]Shuai Wu, Haisheng Liu, Gang Liu, Chao Xie, Jinxin Xu, Xujia Lin. Finite Element Simulation Analysis of Unloading Method of Space Tube Truss Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(9): 25-29. doi: 10.13206/j.gjgS22061007
    [7]Qingqing Xiong, Jiahui Qian, Zhihua Chen. Research Progress on Mechanical Properties of Concrete-Filled Steel Tube Members Under Corrosive Environment[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 1-19. doi: 10.13206/j.gjgs22041501
    [8]Weijia Xu, Xiaomei Ning, Ruoqiang Feng, Penghui Xu. Research on Lateral Performance of New Type Cold-Formed Steel Framed Shear Walls with Steel Sheathing and Gypsum Board[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 38-46. doi: 10.13206/j.gjgS20050201
    [9]Jing Li, Wucai Lu. Finite Element Simulation and Parametric Analysis of Composite Shear Walls with Steel Plates and Infill Concrete Under Axial Compression[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(9): 10-18. doi: 10.13206/j.gjgS20062202
    [10]Yongqiang Qiao, Taiyuan Guo, Qing Hu, Dongze Song. Finite Element Simulation Analysis of Lifting Point Arrangement and Support Unloading of Long-Span Roof Truss[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(7): 29-34. doi: 10.13206/j.gjgS20031801
    [11]Qiang Xu, Haowen Liu, Wentao Qiao, Chao Wang. Finite Element Analysis on Seismic Behavior of A New Prefabricated Corrugated Steel Plate and Polyurethane Composite Shear Wall[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(12): 1-8. doi: 10.13206/j.gjgS21051102
    [12]Dong Liu, Yongjiu Shi, Xianglin Yu, Chengliang Tu. Parametric Analyses on Lateral Performance About Modular Composite Shear Wall with Double Steel Plates and Infill Concrete[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(12): 43-49. doi: 10.13206/j.gjgS20120701
    [13]Chao Gong, Hao Kang, Zhaoxin Hou, Yuyin Wang, Weiqiao Liang, Guowei Zhang. Theoretical Analysis and Experimental Study on Bending Behavior of Steel-Concrete Composite Flat Beams[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(6): 41-49. doi: 10.13206/j.gjgS20051201
  • Cited by

    Periodical cited type(0)

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.2 %FULLTEXT: 16.2 %META: 79.7 %META: 79.7 %PDF: 4.1 %PDF: 4.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.0 %其他: 11.0 %Australia: 0.2 %Australia: 0.2 %China: 1.3 %China: 1.3 %上海: 1.9 %上海: 1.9 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.2 %佛山: 0.2 %佳木斯: 0.2 %佳木斯: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 3.2 %北京: 3.2 %北海道: 0.2 %北海道: 0.2 %南京: 0.7 %南京: 0.7 %南平: 0.2 %南平: 0.2 %南昌: 0.4 %南昌: 0.4 %南通: 1.1 %南通: 1.1 %南阳: 0.2 %南阳: 0.2 %台州: 0.6 %台州: 0.6 %合肥: 0.7 %合肥: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %大连: 0.4 %大连: 0.4 %天津: 1.3 %天津: 1.3 %宜宾: 0.2 %宜宾: 0.2 %常州: 0.4 %常州: 0.4 %常德: 0.2 %常德: 0.2 %广州: 0.4 %广州: 0.4 %庆阳: 0.2 %庆阳: 0.2 %张家口: 3.9 %张家口: 3.9 %德州: 0.2 %德州: 0.2 %德阳: 0.2 %德阳: 0.2 %成都: 0.9 %成都: 0.9 %扬州: 0.2 %扬州: 0.2 %新乡: 0.6 %新乡: 0.6 %无锡: 0.7 %无锡: 0.7 %昆明: 0.6 %昆明: 0.6 %杭州: 0.7 %杭州: 0.7 %格兰特县: 0.4 %格兰特县: 0.4 %武汉: 0.7 %武汉: 0.7 %毕节: 0.2 %毕节: 0.2 %汉中: 0.2 %汉中: 0.2 %沧州: 0.2 %沧州: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %深圳: 0.7 %深圳: 0.7 %温州: 0.6 %温州: 0.6 %滁州: 0.2 %滁州: 0.2 %滨州: 0.4 %滨州: 0.4 %漯河: 1.9 %漯河: 1.9 %烟台: 0.4 %烟台: 0.4 %焦作: 0.2 %焦作: 0.2 %珠海: 0.2 %珠海: 0.2 %盐城: 0.6 %盐城: 0.6 %眉山: 0.2 %眉山: 0.2 %红河: 0.2 %红河: 0.2 %绍兴: 0.4 %绍兴: 0.4 %芒廷维尤: 6.0 %芒廷维尤: 6.0 %芜湖: 0.4 %芜湖: 0.4 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %茂名: 0.2 %茂名: 0.2 %衡水: 0.2 %衡水: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 43.3 %西宁: 43.3 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.4 %运城: 0.4 %郑州: 1.3 %郑州: 1.3 %重庆: 0.6 %重庆: 0.6 %长春: 0.2 %长春: 0.2 %长沙: 1.3 %长沙: 1.3 %长治: 0.4 %长治: 0.4 %阳泉: 0.9 %阳泉: 0.9 %马鞍山: 0.9 %马鞍山: 0.9 %驻马店: 0.4 %驻马店: 0.4 %龙岩: 0.2 %龙岩: 0.2 %其他AustraliaChina上海伊利诺伊州佛山佳木斯兰州北京北海道南京南平南昌南通南阳台州合肥嘉兴大连天津宜宾常州常德广州庆阳张家口德州德阳成都扬州新乡无锡昆明杭州格兰特县武汉毕节汉中沧州洛阳济南深圳温州滁州滨州漯河烟台焦作珠海盐城眉山红河绍兴芒廷维尤芜湖芝加哥苏州茂名衡水衢州西宁西安西雅图贵阳运城郑州重庆长春长沙长治阳泉马鞍山驻马店龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (426) PDF downloads(22) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return