Corrugated steel plate is widely used as lateral-force resisting component for modular steel construction(MSC). Meanwhile, openings served as windows or doors are commonplace for the corrugated steel plate shear walls(CSPSWs) in MSC for the realization of the building function. However, there is a lack of research on the lateral performance and design method on CSPSWs with openings, which hinders the promotion and application of MSC to some extent. Elaborate finite element model(FEM) was developed for CSPSWs with openings by general finite element software ABAQUS based on the previous cyclic tests on CSPSWs with openings, considering geometric nonlinearity, material nonlinearity and geometrical imperfection. The reliability of the FEM was verified against the test results and the failure mechanism of the specimens was revealed. It is indicated that the developed FEM can well predict the initial lateral stiffness, shear capacity and failure modes of CSPSWs with openings under low cyclic loading. Stress concentration exists in the corner regions of the opening under earthquake. It is recommended that the opening should be located off the end of the diagonal tension field to guarantee the deformation capacity and ductility of the specimen. The theoretical calculating model of CSPSWs with openings was established. CSPSWs with openings was equivalent as some series-parallel connected springs. The theoretical formulas for predicting the initial lateral stiffness of CSPSWs with openings were deduced and validated against the related test and numerical results. It is indicated that the proposed formulas can predict the lateral stiffness of CSPSWs with openings with well precision. Parametric analysis was conducted to reveal the influence of the thickness of the infill panel, the height of the crest of the infill corrugated steel plate and the location of the opening on the initial lateral stiffness of CSPSWs with openings. The results indicate that the location of the opening location affects the initial lateral stiffness of CSPSWs with openings significantly. The opening is suggested to be located near the outer frame to obtain higher lateral stiffness. The present study provides calculating method for initial lateral stiffness of CSPSWs with openings and the location of the openings is recommended.
Gunawardena T, Mendis P.Steel modular construction and its applicability to the building industry in China[J].钢结构(中英文), 2020, 35(2):66-73.DOI: 10.13206/j.gjgSE20010802.
[2]
Deng E F, Zong L, Ding Y, et al.Seismic performance of mid-to-high rise modular steel construction:a critical review[J].Thin-walled Structures, 2020, 155.DOI: 10.1016/j.tws.2020.106924.
Fereshteh E, Massood M, Abolhassan V.Experimental study on cyclic behavior of trapezoidally corrugated steel shear walls[J].Engineering Structures, 2013, 48:750-762.
[6]
Giriunas K, Sezen H, Dupaix R B.Evaluation, modelling, and analysis of shipping container building structures[J].Engineering Structures, 2012, 43:48-57.
[7]
Deng E F, Zong L, Ding Y.Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction[J].Steel and Composite Structures, 2019, 32(3):347-359.
[8]
Yu Y J, Chen Z H.Rigidity of corrugated plate sidewalls and its effect on the modular structural design[J].Engineering Structures, 2018, 175:191-200.
[9]
Bahrebar M, Kabir M Z, Zirakian T, et al.Structural performance assessment of trapezoidally-corrugated and centrally-perforated plate shear walls[J].Journal of Constructional Steel Research, 2016, 122:584-594.
[10]
Farzampour A, Laman J A, Mofid M.Behavior predication of corrugated steel plate shear walls with openings[J].Journal of Constructional Steel Research, 2015, 114:258-268.
[11]
Ding Y, Deng E F, Zong L, et al.Cyclic tests on corrugated steel plate shear walls with openings in modularized-constructions[J].Journal of Constructional Steel Research, 2017, 138:675-691.