Wenfu Zhang, Feng Ma, Kaijie Zhu, Bin Huang. Theoritical Study of Flexural-Torsional Buckling of Biaxial Symmetric Dumbbell-Shaped CFST Arches Based on Plate-Beam Theory[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(2): 13-21. doi: 10.13206/j.gjgS21090401
Citation: Wenfu Zhang, Feng Ma, Kaijie Zhu, Bin Huang. Theoritical Study of Flexural-Torsional Buckling of Biaxial Symmetric Dumbbell-Shaped CFST Arches Based on Plate-Beam Theory[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(2): 13-21. doi: 10.13206/j.gjgS21090401

Theoritical Study of Flexural-Torsional Buckling of Biaxial Symmetric Dumbbell-Shaped CFST Arches Based on Plate-Beam Theory

doi: 10.13206/j.gjgS21090401
  • Received Date: 2021-09-04
    Available Online: 2022-04-22
  • The existing theoretical formulas are only applicable to single-material components, and the existing stability theory cannot be used to solve components composed of different materials. Therefore, Professor Wenfu Zhang independently proposed a new engineering theory that can solve the combined torsion and flexural-torsional buckling of thin-walled members in 2014. The theory mainly adopts three basic assumptions:rigid periphery assumption, plate deformation assumption, beam deformation assumption. Different from the traditional Vlasov theory, the longitudinal displacement, linear and nonlinear strain, and strain energy in the plate-beam theory can be derived from the mature Kirchhoff thin plate theory and Euler beam theory. It can not only solve the problem of warpage that cannot consider the influence of different materials of steel and concrete, but also avoid the controversy caused by the arbitrariness of assuming the warpage function.
    For the convenience of description, two sets of coordinate systems are introduced in the plate-beam theory, namely the global coordinate system xyz and the local coordinate system nsz. These two sets of coordimate systems are similar to the Vlasov coordinates, and both satisty the right-handed spiral rule.The origin of the global coordinate system coincides with the centroid of the section, and the x and y axes are the main axes of the section, respectively. Unlike Vlasov curvilinear coordinate system, the local coordinate system nsz is a rectangular coordinate system. The origin coincides with the centroid of each plate, the s-axis coincides with the mid-plane of the plate, and the n-axis coincides with the normal to the mid-plane of the plate. Turning from the n-axis to the s-axis conforms to the right-hand screw rule, and the thumb should be aligned with the positive z-axis.
    Based on the plate-beam theory, the cross-sectional properties of the biaxially symmetric dumbbell-shaped CFST section are deduced, and the displacement field and strain field for bending-torsional buckling are established according to related assumptions, and the total strain energy and total initial stress potential energy are derived. Furthermore, the bending stiffness, warping stiffness and free torsion stiffness of the biaxially symmetric dumbbell-shaped concrete-filled steel tube section are obtained, and the correctness of the theoretical formula is verified through calculation examples and finite element analysis.
  • [1]
    韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [2]
    钟善桐.钢管混凝土结构[M].3版.北京:清华大学出版社,2003.
    [3]
    郭彦林,窦超.现代拱形钢结构设计原理与应用[M].北京:科学出版社,2013.
    [4]
    陈宝春,盛叶.钢管混凝土哑铃形拱面内极限承载力研究[J].工程力学,2009,26(9):94-104.
    [5]
    韦建刚,傅斌,陈宝春.钢管混凝土哑铃形截面构件抗扭承载力研究[J].工程力学,2013,30(7):68-74.
    [6]
    盛叶.钢管混凝土哑铃形构件抗弯刚度分析[J].北华大学学报(自然科学版),2010,11(6):566-569.
    [7]
    Vacharajittiphan P,Trahair N S.Flexural-torsional buckling of curved members[J].Journal of the Structural Division,1975,101(6):1223-1238.
    [8]
    Bradford M A,Pi Y L.A new analytical solution for lateral-torsional buckling of arches under axial uniform compression[J].Engineering Structures,2012,41:14-23.
    [9]
    Liu A R,Lu W H,Fu J,et al.Lateral-torsional buckling of fixed circular arches having a thin-walled section under a central concentrated load[J].Thin-Walled Structures,2017,118:46-55.
    [10]
    张文福.工字形轴压钢柱弹性弯扭屈曲的新理论[C]//第十五届全国现代结构工程学术研讨会论文集.2015.
    [11]
    张文福.狭长矩形薄板扭转与弯扭屈曲的新理论[C]//第十五届全国现代结构工程学术研讨会论文集.2015.
    [12]
    张文福.工字形钢梁弹塑性弯扭屈曲简化力学模型与解析解[J].南京工程学院学报(自然科学版),2016,14(4):1-9.
    [13]
    张文福,陈克珊,宗兰,等.方钢管混凝土翼缘工字形梁扭转刚度的有限元验证[C]//第25届全国结构工程学术会议论文集.2016.
    [14]
    张文福,陈克珊,宗兰,等.方钢管混凝土自由扭转刚度的有限元验证[C]//第25届全国结构工程学术会议论文集.2016.
    [15]
    张文福,李洋,邓云,等.内置工字钢骨方钢管混凝土自由扭转刚度计算与FEM验证[J].东北石油大学学报,2018,42(3):113-122

    ,130.
    [16]
    张文福.钢结构平面外稳定理论[M].武汉:武汉理工大学出版社,2019.
    [17]
    Wei J G,Fu B,Chen B C.Analysis of thetorsional stiffness of the dumbbell-shaped concrete-filled steel tubular members[C]//The 12th International Symposium on Structural Engineering.2012:819-823.
  • Relative Articles

    [1]Shuxin Liu, Yongqian Zhang, Yuan Liu, Hongpeng Sun. Status and Prospect of Boiler Steel Structure Technology Development[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 56-62. doi: 10.13206/j.gjgS24101036
    [2]Biao Li, Fei Lyu, Hao Sun, Faxing Ding, Yongqiang Cai, Chaocheng Zhang. Comparative Study on Seismic Performance of Several Types of Square Section Piers at the Same Cost[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(1): 53-67. doi: 10.13206/j.gjgS23063003
    [3]Zhijian Yang Wenzhi Zuo, . Finite Element Analysis on Axial Compressive Performance of RHHCFST Short Columns with Longitudinal Stiffeners[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 19-28. doi: 10.13206/j.gjgS23112901
    [4]Jianwei Li, Lanlan Wang, Chen Jia, Lanhui Guo. Axial Compression Performance of Slender Concrete-Filled Circular Steel Tubular Column with Pitting Corrosion Damage[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 47-54. doi: 10.13206/j.gjgS23111502
    [5]Yan Gao Guochang Li Xiao Li, . Finite Element Analysis of Pure Bending Properties of Square Steel Tube-Wood-Concrete Members[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 38-46. doi: 10.13206/j.gjgS23110202
    [6]Guochang Li, Lirong Wei, Zengmei Qiu, Xu Liu. Seismic Fragility Analysis of High-Strength Concrete Filled Steel Tube Column-Aluminum Alloy Buckling Restrained Braces Structure System[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 1-9. doi: 10.13206/j.gjgS22120201
    [7]Genshu Tong. Limiting Confining Factor for Concrete Filled Circular Tube[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(6): 61-63. doi: 10.13206/j.gjgS22123020
    [8]Qingqing Xiong, Jiahui Qian, Zhihua Chen. Research Progress on Mechanical Properties of Concrete-Filled Steel Tube Members Under Corrosive Environment[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 1-19. doi: 10.13206/j.gjgs22041501
    [9]Yue Chen, Gang Wang, Xiaobin Hao, Guihai Yan. Evaluation of the Mechanism and Influence Parameters of the Core Concrete Debonding in the Concrete-Filled Steel Tube[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 20-30. doi: 10.13206/j.gjgS21110501
    [10]TONG Ji, TONG Gen-shu. Flexural-Torsional Buckling of Concrete-Filled Multicellular Steel Tube Walls[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(11): 1-23. doi: 10.13206/j.gjgS22070401
    [11]Haixiao Chen, Genshu Tong. Flexural-Torsional Capacity of Beam-Columns Beam-Columns with Box Section[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(9): 30-55. doi: 10.13206/j.gjgS22032603
    [12]ZHOU Jia, TONG Gen-shu. Flexural-Torsional Buckling Capacity of Beam-Columns with H-Section[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(10): 1-23. doi: 10.13206/j.gjgS22041701
    [13]Genshu Tong. RATIONAL DESIGN OF CRANE RUNWAY GIRDERS[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 65-73. doi: 10.13206/j.gjgSE20020401
    [14]Lijun Wang. Design of axial compression member[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(4): 39-49. doi: 10.13206/j.gjgS20041302
    [15]Lijun Wang. Design of Flexural Members[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(6): 55-64. doi: 10.13206/j.gjgS20052507
    [16]Lijun Wang. TORSION AND FLEXURE BUCKLING OF CENTRALLY LOADED MEMBERS[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 37-64. doi: 10.13206/j.gjgS19112603
  • Cited by

    Periodical cited type(1)

    1. 陈正阳,盛叶,黄庚浪,刘静,吴延年. 哑铃形钢管混凝土压弯相关曲线分析. 建筑钢结构进展. 2023(08): 57-65 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.2 %FULLTEXT: 22.2 %META: 74.9 %META: 74.9 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.9 %其他: 13.9 %China: 2.6 %China: 2.6 %上海: 0.7 %上海: 0.7 %北京: 1.7 %北京: 1.7 %南通: 0.2 %南通: 0.2 %台州: 0.2 %台州: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.5 %嘉兴: 0.5 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %常州: 0.2 %常州: 0.2 %广州: 0.7 %广州: 0.7 %张家口: 3.5 %张家口: 3.5 %成都: 0.2 %成都: 0.2 %扬州: 0.5 %扬州: 0.5 %昆明: 0.2 %昆明: 0.2 %本溪: 0.2 %本溪: 0.2 %杭州: 1.2 %杭州: 1.2 %武汉: 1.2 %武汉: 1.2 %泉州: 0.5 %泉州: 0.5 %深圳: 0.2 %深圳: 0.2 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.5 %石家庄: 0.5 %秦皇岛: 0.2 %秦皇岛: 0.2 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 9.9 %芒廷维尤: 9.9 %芜湖: 0.2 %芜湖: 0.2 %苏州: 1.7 %苏州: 1.7 %西宁: 53.4 %西宁: 53.4 %西安: 0.2 %西安: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.4 %运城: 1.4 %长沙: 0.2 %长沙: 0.2 %阳泉: 1.4 %阳泉: 1.4 %其他China上海北京南通台州哈尔滨嘉兴大连天津常州广州张家口成都扬州昆明本溪杭州武汉泉州深圳漯河石家庄秦皇岛美国伊利诺斯芝加哥芒廷维尤芜湖苏州西宁西安贵阳运城长沙阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (316) PDF downloads(12) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return