Volume 37 Issue 6
Sep.  2022
Turn off MathJax
Article Contents
Lang Liu, Xidong Zhang. Effect of Material Degradation on Fatigue Properties of Steel-Concrete Composite Bridge Welds[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(6): 9-17. doi: 10.13206/j.gjgS21080901
Citation: Lang Liu, Xidong Zhang. Effect of Material Degradation on Fatigue Properties of Steel-Concrete Composite Bridge Welds[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(6): 9-17. doi: 10.13206/j.gjgS21080901

Effect of Material Degradation on Fatigue Properties of Steel-Concrete Composite Bridge Welds

doi: 10.13206/j.gjgS21080901
  • Received Date: 2021-08-09
    Available Online: 2022-09-02
  • In order to study the influence of material degradation on the fatigue performance of steel-concrete composite beam bridge welds,the weight loss rate of reinforcement and steel plate and the time-varying strength of concrete are calculated according to the law of reinforcement corrosion,the law of concrete strength and the law of steel corrosion.The finite element model of degraded bridge was established by using ANSYS software.Taking the weld joint at the junction of main beam mid span web and lower flange as the research object,firstly,under the action of AASHTO standard fatigue vehicle,the stress time history of the welded joints of the main beam under different degradation conditions was extracted,and the influence of material degradation on the joint stress was discussed;then,based on Miner's linear cumulative damage theory,the fatigue damage development curves under different degradation years were calculated,the influence of material degradation on the fatigue damage curve was analyzed,and the variation laws of the maximum stress amplitude and the number of equivalent stress cycles of the bridge were discussed;finally,the fatigue damage ratio was defined to study the effect of material degradation on the fatigue damage of welding details of composite beam bridge.
    The results show that the stress in the weld joint area is easily affected by material degradation.The stress value of the weld joint increases with the increase of degradation years,and the closer the loading position is,the greater the stress value is.The fatigue damage development curve of bridge welding details shows a linear growth trend,and material degradation will lead to the acceleration of fatigue damage accumulation of fatigue details.When reaching the design basis,the maximum increase of fatigue damage value reaches 7.5 times;the maximum stress amplitude is more sensitive to material degradation,and the growth rate of the maximum stress amplitude generated by fatigue details shows an increasing trend.The growth rates of the stress amplitude of the four nodes in the 100-year degradation condition reach 10.4%,13.6%,8.5% and 14.7% respectively.However,the growth rate of the number of equivalent stress cycles does not show an obvious law.The fatigue damage ratio increases nonlinearly with the degradation time.When the degradation time is 100 years,the fatigue damage ratio of beam bridges is 7.0,7.4,6.4 and 7.52 respectively.In addition,the greater the degree of structural degradation is,the higher the nonlinear degree of fatigue damage ratio is.
  • loading
  • [1]
    《中国公路学报》编辑部.中国桥梁工程学术研究综述·2021[J].中国公路学报,2021,34(2):1-97.
    [2]
    秦世强,黄春雷,张佳斌,等.基于应力监测的钢-UHPC组合桥面和环氧沥青钢桥面疲劳性能对比[J].东南大学学报(自然科学版),2021,51(1):61-70.
    [3]
    Mashayekhi M, Santini-Bell E.Fatigue assessment of a complex welded steel bridge connection utilizing a three-dimensional multi-scale finite element model and hotspot stress method[J].Engineering Structures, 2020,214:50-66.
    [4]
    王伟,周尚猛,王亚飞.U肋设小隔板和支撑板的正交异性板疲劳性能试验研究[J].桥梁建设,2020,50(3):58-63.
    [5]
    刘青茹,吉伯海,姚悦,等.基于有限元的钢板组合梁桥加劲肋连接细节疲劳应力特征[J] [2021-08-04].南京工业大学学报(自然科学版),2021,43(3):1-9.2021-08-04:1-9
    [6]
    占玉林,斯睿哲,臧亚美.混凝土桥梁耐久性2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(增刊1):100-106.
    [7]
    袁阳光,陈笑,韩万水,等.在役混凝土桥梁非平稳抗力劣化模型建立与更新[J].中国公路学报,2019,32(12):145-155.
    [8]
    孙莉,刘钊.2000~2008年美国桥梁倒塌案例分析与启示[J].世界桥梁,2009(3):46-49.
    [9]
    彭建新,邵旭东,张建仁.气候变化、CO2排放及其对碳化腐蚀的钢筋混凝土开裂和时变可靠度的影响[J].土木工程学报,2010,43(6):74-81.
    [10]
    Li L, Li Y, Shi W, et al. Deterioration of fatigue strength of bolted connection plates under combined corrosion and fatigue[J]. Journal of Constructional Steel Research, 2021, 179:10655942-58.
    [11]
    黄云,张清华,郭亚文,等.钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J].工程力学,2019,36(3):203-213

    ,223.
    [12]
    张清华,崔闯,卜一之,等.钢结构桥梁疲劳2019年度研究进展[J].土木与环境工程学报(中英文),2020,42(5

    ):147-158.
    [13]
    Alencar G, de Jesus A M P, Calçada R A B, et al. Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration[J]. Engineering Structures, 2018, 166:46-61.
    [14]
    牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [15]
    李杉,李旺鹏,唐文水,等.锈蚀钢筋压屈应力-应变本构关系模型研究[J].华中科技大学学报(自然科学版),2021,49(6):98-102.
    [16]
    吴庆,袁迎曙.锈蚀钢筋力学性能劣化规律试验研究[J].土木工程学报,2008(12):42-47.
    [17]
    张春涛,李正良,王汝恒.腐蚀和疲劳耦合作用下Q345角钢拟静力试验研究[J].上海交通大学学报,2018,52(2):152-162.
    [18]
    张振浩,陈济功,朱迅.基于神经网络的斜拉桥钢箱梁局部连接细节腐蚀疲劳可靠度研究[J].中国公路学报,2019,32(12):186-196.
    [19]
    Kayser J R, Nowak A S. Capacity loss due to corrosion in steel-girder bridges[J]. Journal of Structural Engineering, 1989, 115(6):1525-1537.
    [20]
    Komp M E. Atmospheric corrosion ratings of weethering steels-calculation and significance[J]. Materials Performance, 1987, 26(7):42-44.
    [21]
    Lu D, Yan W, Lei N. A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect[J]. Engineering Structures, 2019, 178(11):309-317.
    [22]
    曹琛,郑山锁,胡卫兵,等.大气环境腐蚀下钢结构力学性能研究综述[J].材料导报,2020,34(11):11162-11170.
    [23]
    Wang W, Deng L, Shao X. Fatigue design of steel bridges considering the effect of dynamic vehicle loading and overloaded trucks[J]. Journal of Bridge Engineering, 2016, 21(9):040160481-12.
    [24]
    AASHTO. Stamdard specification for highway bridges[S].Washington D C:AASHTO, 2012.
    [25]
    Hahin C. Effects of corrosion and fatigue on the load-carrying capacity of structural and reinforcing steel[R]. Illinois:Dept. of Transportation, Bureau of Materials and Physical Research, 1994.
    [26]
    Schilling C G. Stress cycles for fatigue design of steel bridges[J]. Journal of Structural Engineering, 1984, 110(6):1222-1234.
    [27]
    朱劲松,香超,祁海东.考虑车桥耦合效应的大跨悬索桥钢-混组合梁疲劳损伤评估[J].振动与冲击,2021,40(5):218-229.
    [28]
    Kwon K, Frangopol D M, Soliman M. Probabilistic fatigue life estimation of steel bridges by using a bilinear S-N approach[J]. Journal of Bridge Engineering, 2012, 17(1):58-70.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (249) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return