Citation: | Lang Liu, Xidong Zhang. Effect of Material Degradation on Fatigue Properties of Steel-Concrete Composite Bridge Welds[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(6): 9-17. doi: 10.13206/j.gjgS21080901 |
[1] |
《中国公路学报》编辑部.中国桥梁工程学术研究综述·2021[J].中国公路学报,2021,34(2):1-97.
|
[2] |
秦世强,黄春雷,张佳斌,等.基于应力监测的钢-UHPC组合桥面和环氧沥青钢桥面疲劳性能对比[J].东南大学学报(自然科学版),2021,51(1):61-70.
|
[3] |
Mashayekhi M, Santini-Bell E.Fatigue assessment of a complex welded steel bridge connection utilizing a three-dimensional multi-scale finite element model and hotspot stress method[J].Engineering Structures, 2020,214:50-66.
|
[4] |
王伟,周尚猛,王亚飞.U肋设小隔板和支撑板的正交异性板疲劳性能试验研究[J].桥梁建设,2020,50(3):58-63.
|
[5] |
刘青茹,吉伯海,姚悦,等.基于有限元的钢板组合梁桥加劲肋连接细节疲劳应力特征[J] [2021-08-04].南京工业大学学报(自然科学版),2021,43(3):1-9.2021-08-04:1-9
|
[6] |
占玉林,斯睿哲,臧亚美.混凝土桥梁耐久性2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(增刊1):100-106.
|
[7] |
袁阳光,陈笑,韩万水,等.在役混凝土桥梁非平稳抗力劣化模型建立与更新[J].中国公路学报,2019,32(12):145-155.
|
[8] |
孙莉,刘钊.2000~2008年美国桥梁倒塌案例分析与启示[J].世界桥梁,2009(3):46-49.
|
[9] |
彭建新,邵旭东,张建仁.气候变化、CO2排放及其对碳化腐蚀的钢筋混凝土开裂和时变可靠度的影响[J].土木工程学报,2010,43(6):74-81.
|
[10] |
Li L, Li Y, Shi W, et al. Deterioration of fatigue strength of bolted connection plates under combined corrosion and fatigue[J]. Journal of Constructional Steel Research, 2021, 179:10655942-58.
|
[11] |
黄云,张清华,郭亚文,等.钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J].工程力学,2019,36(3):203-213
,223.
|
[12] |
张清华,崔闯,卜一之,等.钢结构桥梁疲劳2019年度研究进展[J].土木与环境工程学报(中英文),2020,42(5
):147-158.
|
[13] |
Alencar G, de Jesus A M P, Calçada R A B, et al. Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration[J]. Engineering Structures, 2018, 166:46-61.
|
[14] |
牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
|
[15] |
李杉,李旺鹏,唐文水,等.锈蚀钢筋压屈应力-应变本构关系模型研究[J].华中科技大学学报(自然科学版),2021,49(6):98-102.
|
[16] |
吴庆,袁迎曙.锈蚀钢筋力学性能劣化规律试验研究[J].土木工程学报,2008(12):42-47.
|
[17] |
张春涛,李正良,王汝恒.腐蚀和疲劳耦合作用下Q345角钢拟静力试验研究[J].上海交通大学学报,2018,52(2):152-162.
|
[18] |
张振浩,陈济功,朱迅.基于神经网络的斜拉桥钢箱梁局部连接细节腐蚀疲劳可靠度研究[J].中国公路学报,2019,32(12):186-196.
|
[19] |
Kayser J R, Nowak A S. Capacity loss due to corrosion in steel-girder bridges[J]. Journal of Structural Engineering, 1989, 115(6):1525-1537.
|
[20] |
Komp M E. Atmospheric corrosion ratings of weethering steels-calculation and significance[J]. Materials Performance, 1987, 26(7):42-44.
|
[21] |
Lu D, Yan W, Lei N. A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect[J]. Engineering Structures, 2019, 178(11):309-317.
|
[22] |
曹琛,郑山锁,胡卫兵,等.大气环境腐蚀下钢结构力学性能研究综述[J].材料导报,2020,34(11):11162-11170.
|
[23] |
Wang W, Deng L, Shao X. Fatigue design of steel bridges considering the effect of dynamic vehicle loading and overloaded trucks[J]. Journal of Bridge Engineering, 2016, 21(9):040160481-12.
|
[24] |
AASHTO. Stamdard specification for highway bridges[S].Washington D C:AASHTO, 2012.
|
[25] |
Hahin C. Effects of corrosion and fatigue on the load-carrying capacity of structural and reinforcing steel[R]. Illinois:Dept. of Transportation, Bureau of Materials and Physical Research, 1994.
|
[26] |
Schilling C G. Stress cycles for fatigue design of steel bridges[J]. Journal of Structural Engineering, 1984, 110(6):1222-1234.
|
[27] |
朱劲松,香超,祁海东.考虑车桥耦合效应的大跨悬索桥钢-混组合梁疲劳损伤评估[J].振动与冲击,2021,40(5):218-229.
|
[28] |
Kwon K, Frangopol D M, Soliman M. Probabilistic fatigue life estimation of steel bridges by using a bilinear S-N approach[J]. Journal of Bridge Engineering, 2012, 17(1):58-70.
|