Lianguang Jia, Jiahui Du, Ran Bi, Wenting Ji, Chen Chen. Study on Pure Flexural Buckling Behavior of Web of Castellated Composite Beams with Regular Hexagonal Hole[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(2): 1-12. doi: 10.13206/j.gjgS21061602
Citation: Lianguang Jia, Jiahui Du, Ran Bi, Wenting Ji, Chen Chen. Study on Pure Flexural Buckling Behavior of Web of Castellated Composite Beams with Regular Hexagonal Hole[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(2): 1-12. doi: 10.13206/j.gjgS21061602

Study on Pure Flexural Buckling Behavior of Web of Castellated Composite Beams with Regular Hexagonal Hole

doi: 10.13206/j.gjgS21061602
  • Received Date: 2021-06-16
    Available Online: 2022-04-22
  • Castellated components have been widely used in high-rise buildings and long-span structures in recent years because of their advantages such as high bearing capacity, great bending stiffness and convenient crossing pipelines. For the castellated component, the local buckling of the web is one of its main failure modes, and the buckling will cause a rapid increase of the local deformation of the web until the work is terminated, which may result in the overall instability of the components and the structural chain reaction. In the traditional steel structure design, the local buckling of the web is avoided by limiting the height to thickness ratio of the web. In the castellated component, the inter-hole pier and its bridge are likely to have local buckling problems, which is more complicated than the solid member. At present, most of the researches on the local stability of castellated beam members are carried out around pure steel castellated beams, and there are few studies on castellated beams considering concrete slabs. Therefore, it is necessary to study the pure flexural buckling of castellated composite beams.
    On the basis of the two pure steel castellated beams, two simply supported castellated composite beams were designed and fabricated. The static test of these two castellated steel beam-concrete composite beams was carried out at the four points. By observing the location of buckling on the steel beam and shape of the cracks in the concrete slab, the web buckling performance, bearing capacity and hole angle strain were analyzed, and compared with the pure steel castellated beams, in order to study the effect of the stiffening rib between the floor and web on the failure pattern, stress distribution and bearing capacity of castellated steel beam specimens. The finite element software ABAQUS was used to establish the model to carry on the numerical simulation, by comparision between the test result and the finite element simulation result, the model result is consistent with the test result.Based on the experimental model, the influence of height to thickness ratio and the opening ratio on the pure flexural buckling and the ultimate bearing capacity of castellated composite beams was analyzed.
    It shows that pure castellated beams buckle at the upper flange and the corresponding bridge plate, and the composite beams buckle at the pier plate and bridge slab. Concrete slab can effectively improve the yield load and ultimate load of composite beams, improve the ductility of specimens, and avoid the occurrence of local buckling. Setting stiffeners between the webs of composite beams can reduce the stress concentration at the corner of the holes and avoid buckling of the pier plates between the holes. There are two buckling modes of the composite beams, both of which are the semi-wavy out-of-plane instability of the piers between holes. The difference lies in the out-of-plane displacement distribution.The displacement of the first buckling mode centrosymmetric distributes with respect to the middle of the beam span and the displacement of the second buckling mode centrosymmetric distributes with respect to the middle of the beam span.The height to thickness ratio is a decisive factor affecting the failure mode and pure flexural buckling of composite beams. When the height to thickness ratio is less than 80, strength failure occurs. When the height to thickness ratio is greater than 80, buckling failure occurs. Reducing height to thickness ratio of web can effectively improve the buckling resistance of specimens and increase the buckling resistance of specimens. Opening ratio is an important factor affecting the failure mode and pure flexural buckling of composite beams. Increasing the opening ratio within a certain range can increase the buckling load of specimens.
  • [1]
    张益凡.蜂窝梁的整体和局部稳定分析[D].长沙:中南大学,2008.
    [2]
    Tsavdaridis K D,D'Mello C.Web buckling study of the behavior and strength of perforated steel beams with different novel web opening shapes[J].Journal of Constructional Steel Research,2011,67(10):1605-1620.
    [3]
    周绪红,李井超,贺拥军.蜂窝梁的稳定性能研究进展[J].建筑结构学报,2019,40(3):21-32.
    [4]
    Anupriya B,Jagadeesa K,Baskar R.Experimental investigation of shear strength of castellated beam with and without stiffeners[J].Journal of Structural Engineering,2015,42(4):358-362.
    [5]
    Chen D Y,Pu W L.The affection of transverse stiffener for elastic buckling of castellated beam web under concentrated load[J].International Journal of Science,2016,3(5):241-247.
    [6]
    贾连光,郎玉霄,毕然.设置横向加劲肋的正六边形孔蜂窝钢梁滞回性能研究[J].工程力学,2019,36(11):168-182.
    [7]
    Redwood R,Demirdjian S.Castellated beam web buckling in shear[J].Journal of Structural Engineering,1998,124(10):1202-1207.
    [8]
    Tsavdaridis K D,D'Mello C.Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes[J].Journal of Constructional Steel Research,2011,67(10):1605-1620.
    [9]
    王旭东,王培军.蜂窝钢梁孔间腹板屈曲性能研究进展[J].建筑钢结构进展,2014,16(6):1-13.
    [10]
    邓皓.弯剪共同作用下蜂窝梁腹板弹性屈曲分析[D].成都:西南石油大学,2016.
    [11]
    罗烈,于合勇.六边形孔蜂窝梁腹板的屈曲性能分析[J].建筑钢结构进展,2010,12(6):46-53.
    [12]
    李鹤,王旭东,张露露.圆角多边形孔蜂窝梁孔间腹板屈曲承载力计算方法对比研究[J].建筑钢结构进展,2017,19(2):38-44.
    [13]
    蒲万丽,冯颇,邓皓.纯弯状态下蜂窝梁腹板的弹性屈曲分析[J].钢结构,2017,32(10):8-12

    ,54.
    [14]
    张卓.纯弯状态下蜂窝梁腹板的局部稳定性分析[D].哈尔滨:哈尔滨工业大学,2006.
    [15]
    陈辰.蜂窝梁腹板局部稳定分析与加劲肋设置[D].沈阳:沈阳建筑大学,2018.
  • Relative Articles

    [1]Yuguan Gao, Yiqun Tang, Erfeng Du. Finite Element Analysis of Mechanical Properties of Extended End-Plate Joints Under the Combined Action of Tension and Bending During the Entire Fire Process[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(12): 95-102. doi: 10.13206/j.gjgS24103101
    [2]Faxing Ding, Luyu She, Linli Duan, Jianxiong Lei. Finite Element Analysis of Seismic Performance of Concrete-Filled Square Steel Tubular Column to Composite Beam Joint with Stiffening Ring Under High Axial Pressure[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(1): 29-40. doi: 10.13206/j.gjgS23072801
  • Cited by

    Periodical cited type(8)

    1. 周凌宇,Naqi Lessani,戴超虎,李分规,石敬州,刘晓春. 装配式双拼槽钢-混凝土开孔组合梁试验研究. 天津大学学报(自然科学与工程技术版). 2024(01): 53-63 .
    2. 李文豪,李林林,吕俊利. 铰接约束下梁端采取加强措施蜂窝组合梁抗火性能数值模拟. 四川建筑科学研究. 2024(01): 22-29 .
    3. 吕俊利,高青松,齐雪婷,孙柏. 火灾后圆形孔蜂窝组合梁受力性能研究. 山东建筑大学学报. 2024(05): 11-19 .
    4. 李明,周稚竣,吴潜,李志伟,刘岗. 内加强环式圆钢管混凝土柱-钢蜂窝梁节点抗震性能研究. 沈阳建筑大学学报(自然科学版). 2023(05): 845-852 .
    5. 周凌宇,王关朝,LESSANI Naqi,方蛟鹏,李分规,戴超虎,曾波,廖飞. 装配式双拼槽钢开孔组合梁受弯性能试验及挠度计算. 中南大学学报(自然科学版). 2023(10): 3961-3974 .
    6. 杨永红,刘悦敏,仇卓涛. 装配式六边形污水处理装备结构的应用研究. 机电工程技术. 2023(11): 309-312 .
    7. 龚大程. 六边形孔蜂窝钢梁的受弯静力性能试验研究. 山西建筑. 2022(20): 65-69 .
    8. 吴开婷,徐小芳. 单向载荷下高层建筑钢结构梁柱屈曲特征研究. 兵器材料科学与工程. 2022(06): 100-104 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.3 %FULLTEXT: 14.3 %META: 81.8 %META: 81.8 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.2 %其他: 11.2 %其他: 0.1 %其他: 0.1 %China: 2.3 %China: 2.3 %United States: 0.4 %United States: 0.4 %上海: 0.9 %上海: 0.9 %勿加泗: 0.3 %勿加泗: 0.3 %北京: 2.3 %北京: 2.3 %十堰: 0.3 %十堰: 0.3 %南京: 1.0 %南京: 1.0 %南平: 0.3 %南平: 0.3 %南昌: 0.4 %南昌: 0.4 %南通: 0.3 %南通: 0.3 %合肥: 1.7 %合肥: 1.7 %嘉兴: 0.9 %嘉兴: 0.9 %大连: 0.1 %大连: 0.1 %天津: 0.6 %天津: 0.6 %安庆: 0.9 %安庆: 0.9 %宜春: 0.3 %宜春: 0.3 %宣城: 0.1 %宣城: 0.1 %常州: 0.4 %常州: 0.4 %常德: 0.1 %常德: 0.1 %广州: 1.3 %广州: 1.3 %廊坊: 0.3 %廊坊: 0.3 %张家口: 3.7 %张家口: 3.7 %徐州: 0.1 %徐州: 0.1 %扬州: 0.9 %扬州: 0.9 %新乡: 0.3 %新乡: 0.3 %无锡: 0.4 %无锡: 0.4 %昆明: 1.3 %昆明: 1.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.1 %杭州: 2.1 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.9 %武汉: 0.9 %沈阳: 1.4 %沈阳: 1.4 %泉州: 0.6 %泉州: 0.6 %洛阳: 0.6 %洛阳: 0.6 %济南: 0.6 %济南: 0.6 %深圳: 0.6 %深圳: 0.6 %温州: 0.3 %温州: 0.3 %滨州: 0.3 %滨州: 0.3 %漯河: 5.4 %漯河: 5.4 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.4 %秦皇岛: 0.4 %绍兴: 0.1 %绍兴: 0.1 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 7.5 %芒廷维尤: 7.5 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.1 %苏州: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 37.0 %西宁: 37.0 %西安: 1.8 %西安: 1.8 %西雅图: 0.1 %西雅图: 0.1 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %郑州: 1.3 %郑州: 1.3 %重庆: 0.1 %重庆: 0.1 %长沙: 1.0 %长沙: 1.0 %阳泉: 0.6 %阳泉: 0.6 %阿克苏: 0.1 %阿克苏: 0.1 %青岛: 0.3 %青岛: 0.3 %其他其他ChinaUnited States上海勿加泗北京十堰南京南平南昌南通合肥嘉兴大连天津安庆宜春宣城常州常德广州廊坊张家口徐州扬州新乡无锡昆明朝阳杭州株洲格兰特县武汉沈阳泉州洛阳济南深圳温州滨州漯河石家庄福州秦皇岛绍兴自贡芒廷维尤芝加哥苏州衡水衢州襄阳西宁西安西雅图贵港贵阳运城郑州重庆长沙阳泉阿克苏青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (575) PDF downloads(29) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return