Zucheng Yao, Wei Wang. Experimental Research on Low-Yield-Point Steel Shear Dampers[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(12): 16-21. doi: 10.13206/j.gjgS20091801
Citation: Zucheng Yao, Wei Wang. Experimental Research on Low-Yield-Point Steel Shear Dampers[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(12): 16-21. doi: 10.13206/j.gjgS20091801

Experimental Research on Low-Yield-Point Steel Shear Dampers

doi: 10.13206/j.gjgS20091801
  • Received Date: 2020-10-02
  • A new shear metal damper with square tubes serving as out-of-plane stiffeners is proposed. The damper is mainly composed of a core plate, square tubes welded to the core plate, flange plates at two sides and connectors for installation. In this displacement-based metallic device, the input seismic energy is mainly dissipated through the shear deformation of the core plates. The core plates are made of a low-yield-point steel with a nominal yield stress of 225 MPa, called LYP225 steel. This material possesses relatively low yield strength, moderate hardening level and good ductility, hence is suitable for metal dampers.
    The paper presents the results of quasi-static tests conducted for evaluating the cyclic elastoplastic response, ultra-low fatigue failure modes and energy dissipation behavior of shear dampers made of LYP225 steel. A total of three full-scale steel shear dampers were tested with the loading condition and flange shape as test variables. The essential mechanical characteristics and ultra-low fatigue behavior of the damper specimens under cyclic loadings were investigated, and the influence of the flange shape to the failure mode was analyzed.
    The test results show that the shear damper made of LYP225 steel possesses good ductility (the ultimate shear angle of the specimens achieved 4. 7%), plump hysteretic response (no sign of buckling of components and no pinching of the hysteretic loops observed during the cyclic tests), favorable energy dissipation capacity (the equivalent damping ratio of the specimens stably maintained approximately 0. 5), and satisfying ultra-low cycle fatigue performance (the loads of the specimens under thirty cycles of design amplitude were stable with slight cracks developed). The cracks of the flanges developed at the welding regions limit the deformation capacity and energy dissipation capacity of the dampers. The " dog-bone" configuration for flanges can well delay the initiation of these undesirable cracks and improve the seismic performance of the dampers. The maximum overstrength factor of specimens reached as large as 1. 63, and this hardening phenomenon is beneficial for energy dissipation but need careful consideration for preventing the second damage to the main structural components.
  • Symans M D, Charney F A, Whittaker A S, et al. Energy dissipation systems for seismic applications:current practice and recent developments[J]. Journal of Structural Engineering, 2008, 134(1):3-21.
    Phillips A R, Eatherton M R. Large-scale experimental study of ring shaped-steel plate shear walls[J]. Journal of Structural Engineering, 2018, 144(8). DOI:10.16511/j. cnki. qhdxxb. 2016.21.053.
    Xu L Y, Nie X, Fan J S. Cyclic behaviour of low-yield-point steel shear panel dampers[J]. Engineering Structures, 2016, 126:391-404.
    中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010.
    中华人民共和国住房和城乡建设部. 建筑消能减震技术规程:JGJ 297-2013[S]. 北京:中国建筑工业出版社, 2013.
    中华人民共和国住房和城乡建设部. 建筑消能阻尼器:JG/T 209-2012[S]. 北京:中国标准出版社, 2012.
  • Relative Articles

    [1]Jianhong Zhang, Peizhao Wang, Wenyan Zhao, Qiang Wang, Daxian Chen, Wenzhi Pan, Weiqing Wang. Research on Key Techniques of Unsupported Construction of Three-Way Grid Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(4): 41-48. doi: 10.13206/j.gjgS240201
    [2]Li Ding, Shangrui Jia, Chuqiao Wu, Changsen Xu. Research on Key Technologies of Cantilever Lifting of Large Cantilever Spoke Truss Structure with Inner Support[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(4): 34-40. doi: 10.13206/j.gjgS23013101
    [3]Xiaodun Wang, Jincheng Jiang, Zhihua Chen, Yang Liu. Research on Key Technology of Design and Construction of Simple Fabricated Special-Shaped Column and Its Steel Frame Structure System in Villages and Towns[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(9): 37-44. doi: 10.13206/j.gjgS22092801
    [4]YANG Guosong, ZOU Huanmiao, CUI Qiang. Key Technology of Cross Steel Truss Construction of Supercomputer Cloud Roof[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(12): 37-44. doi: 10.13206/j.gjgS22032301
    [5]Yanfei Guo, Shanhong Liu, Guowei Wang, Ruiming Ma. Analysis on Manufacturing Control of Flying Geese Shaped Steel Box Arch[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(10): 43-50. doi: 10.13206/j.gjgS20042301
    [6]Yicheng Li. The Key Technology for Factory-Production of Large-Span Steel-Concrete Box Girder[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(9): 44-51. doi: 10.13206/j.gjgS20031601
    [19]10.13206/j.gjg200801017[J]. STEEL CONSTRUCTION(Chinese & English), 2008, 23(1): 60-64.
  • Cited by

    Periodical cited type(17)

    1. 龙秀海,区彤,林松伟,张乐乐,石煦阳,戴君南. 珠海机场二号航站楼主楼屋盖钢结构施工模拟分析. 钢结构(中英文). 2024(03): 38-46 . 本站查看
    2. 李晓青. 中山大学体育馆大跨双向曲面网架屋盖累计外扩整体提升施工技术研究. 建筑施工. 2024(08): 1264-1268 .
    3. 王帅,严仁章,闫春玲,邹杨,朱朋刚. 大跨空间网架结构施工过程中间控制目标参数优化分析. 空间结构. 2024(03): 59-69 .
    4. 贾博. 大型钢结构厂房网架屋面整体提升技术研究. 重庆建筑. 2024(10): 48-51 .
    5. 雷淑忠,李沛萱,侯海涛,黄帅,刘之春,于瑞梁. 大跨度机库整体提升施工关键问题研究. 建筑技术. 2024(23): 2937-2943 .
    6. 谢甫哲,陈丙辉,袁小军,赵昱乔,吴一帆. 复杂空间钢结构多点同步提升施工与监测技术研究. 建筑结构. 2023(14): 126-131 .
    7. 刘瑞琪,胡永利,秦晓鹏,闵凡文,胡莲生. 逐跨提升连接再整体提升大跨度管桁架施工技术研究. 中国建筑装饰装修. 2023(18): 139-141 .
    8. 袁浩,胡文明,黄昌标,马俊杰,潘婷,衡慈文,毕雪林. 埃及中央商务区项目大跨钢连廊施工方案研究与实施. 钢结构(中英文). 2023(11): 28-34 . 本站查看
    9. 雷淑忠,刘鑫,杨大彬. 大跨度网架屋盖整体提升技术研究. 山东建筑大学学报. 2022(03): 28-35 .
    10. 王永生,罗伟,夏康,陆路,王贺. 大跨度屋面桁架整体提升施工技术. 施工技术(中英文). 2022(17): 65-68 .
    11. 张宁,陈萌,张伟,李松茂,杜琦,杨磊. 大跨度大悬挑屋盖网架跨层提升施工技术. 施工技术. 2021(08): 114-116 .
    12. 王玫玲. 珠海某口岸通道大跨双层钢桁架曲线桥结构施工关键技术. 广东土木与建筑. 2021(08): 93-96 .
    13. 雷淑忠,崔节元,刘鑫. 大跨度屋面钢桁架提升施工过程分析研究. 结构工程师. 2021(03): 176-182 .
    14. 程金蓉. 大跨度钢屋盖整体提升安装方案设计研究. 建筑施工. 2021(08): 1485-1488 .
    15. 杨世成. 网架整体提升技术在大型厂房中的应用研究. 中国住宅设施. 2021(11): 128-129 .
    16. 钟逸晨,于康,史磊,郑晓烽,张报成,孙波. 跨度近100米网架与桁架组合屋盖分两次提升的施工技术分析. 中国建筑金属结构. 2021(12): 111-113 .
    17. 张明亮,雷周,刘维,王大纲,王江营. 液压同步整体提升技术在演播厅钢结构屋盖施工中的应用. 施工技术. 2020(14): 22-26 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.0 %FULLTEXT: 13.0 %META: 87.0 %META: 87.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.2 %其他: 11.2 %上海: 1.9 %上海: 1.9 %东莞: 1.9 %东莞: 1.9 %北京: 18.6 %北京: 18.6 %厦门: 0.6 %厦门: 0.6 %嘉兴: 1.9 %嘉兴: 1.9 %天津: 1.2 %天津: 1.2 %太原: 0.6 %太原: 0.6 %安康: 1.2 %安康: 1.2 %徐州: 0.6 %徐州: 0.6 %成都: 1.2 %成都: 1.2 %扬州: 0.6 %扬州: 0.6 %杭州: 1.9 %杭州: 1.9 %格兰特县: 0.6 %格兰特县: 0.6 %汕头: 3.1 %汕头: 3.1 %济南: 0.6 %济南: 0.6 %海口: 0.6 %海口: 0.6 %淮南: 0.6 %淮南: 0.6 %深圳: 1.2 %深圳: 1.2 %漯河: 2.5 %漯河: 2.5 %潍坊: 3.1 %潍坊: 3.1 %烟台: 0.6 %烟台: 0.6 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %芝加哥: 1.2 %芝加哥: 1.2 %衡水: 1.2 %衡水: 1.2 %西宁: 24.8 %西宁: 24.8 %郑州: 1.2 %郑州: 1.2 %长沙: 1.2 %长沙: 1.2 %其他上海东莞北京厦门嘉兴天津太原安康徐州成都扬州杭州格兰特县汕头济南海口淮南深圳漯河潍坊烟台芒廷维尤芝加哥衡水西宁郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (490) PDF downloads(23) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return