Jianzhou Ge, Xuewei Huang, Jun Zhao, Wei Zhao, Chenchen Wei. Fracture Prediction and Analysis of Q690D High Strength Steel Based on Cyclic Void Growth Model[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(7): 18-28. doi: 10.13206/j.gjgS20061103
Citation: Jianzhou Ge, Xuewei Huang, Jun Zhao, Wei Zhao, Chenchen Wei. Fracture Prediction and Analysis of Q690D High Strength Steel Based on Cyclic Void Growth Model[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(7): 18-28. doi: 10.13206/j.gjgS20061103

Fracture Prediction and Analysis of Q690D High Strength Steel Based on Cyclic Void Growth Model

doi: 10.13206/j.gjgS20061103
  • Received Date: 2020-06-11
    Available Online: 2021-09-16
  • High strength steel has been gradually applied in practical steel structures. The ultra-low cycle fatigue fracture analysis of steel is the basis to evaluate the fracture failure of high strength steel structures under strong earthquake. The traditional fracture mechanics method assumes that the crack already exists, and there is a high strain constraint at the initial crack tip, so it is mainly suitable for the study of brittle fracture problems with extremely limited plastic deformation, but it is not suitable for the ductile fracture problems with no macroscopic initial defects and significant plastic deformation under ultra-low cyclic loading. The ultra-low cycle fatigue fracture model based on void growth mechanism has been gradually applied in the ductile fracture analysis of steel.
    In order to study whether the cyclic void growth model (CVGM) is suitable for predicting the fracture failure of domestic Q690D high strength structural steel, 17 rod specimens and 3 dog-bone weakened plate specimens (DB) were designed and processed. The MTS axial servo fatigue test system was used to carry out the fracture test of round bar specimens under monotonic loading and ultra-low cycle loading. The stress-strain relationship, basic mechanical parameters and load-displacement curve of Q690D steel were obtained. The influence of loading system on the bearing capacity and deformation capacity of specimens was analyzed.
    The experimental results show that:1) Q690D steel has no obvious yield platform, and there are obvious notch strengthening effect and cyclic softening phenomenon. Due to the damage of material during cyclic loading, the fracture displacement of cyclic loading is less than that of monotonic loading. 2) By analyzing the fracture morphology of the specimen, it is found that the cracks all start at the center of the minimum section of the specimen. The micro morphology of the specimen fracture is observed by scanning electron microscope. The fracture presents the ductile fracture characteristics of dimple, which conforms to the mechanism of void growth fracture mechanics. At the same time, the characteristic length of Q690D steel is about 0. 3 mm by scanning electron microscope.
    The finite element model of Q690D high strength steel was established by using ABAQUS software. Based on the test results of Q690D rod specimen and combined with finite element analysis, the parameters of CVGM and DSPS of Q690D high strength steel were calibrated. Under monotonic loading, CVGM and DSPS degenerate into the void growth model (VGM) and the stress modified critical strain model (SMCS). Finally, with the help of user subroutine USDFLD in ABAQUS software, the CVGM model is programmed with Fortran language. In the process of numerical calculation, when the material element meets the requirements of failure criteria, the element failure is determined, the stress of the element is released, and then the finite element calculation is continued according to the new state until the specimen failure. The cyclic void growth model of steel is used to predict the fracture failure of dog-bone weakened plate specimen under different loading systems. The crack initiation position, load-displacement curve and fracture displacement of the specimen are in good agreement with the experimental results, and the prediction errors of ultimate load and fracture displacement are within 2% and 12% respectively.
  • [1]
    尹飞,杨璐,施刚,等. 高强度钢材钢结构抗震研究进展综述[J]. 钢结构(中英文), 2020, 35(3):1-25.
    [2]
    Tateishi K, Hanji T, Minami K. A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29(5):887-896. DOI:10. 1016/j. ijfatigue. 2006. 08. 001.
    [3]
    Kanvinde A M, Deierlein G G. Void growth model and the stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132(12):1907-1918. DOI:10. 1061/(ASCE)0733-9445(2006)132:12(1907).
    [4]
    Kanvinde A M, Deierlein G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007(6). DOI:10. 1061/(ASCE) 0733-9399(2007) 133:6(701).
    [5]
    Hancock J W, Mackenzie A C. On the mechanics of ductile failure in high-strength steel subjected to multi-axial stress-states[J]. Journal of Mechanics and Physics of Solids, 1976, 24(3):147-169. DOI:10. 1016/0022-5096(76) 90024-7.
    [6]
    Kanvinde A M, Deierlein G G. Micromecha-nical simulation of earthquake-induced fracture in steel structures[R]. Stanford:Stanford University, 2004.
    [7]
    Bonora N. A nonlinear CDM model for ductile failure[J]. Engineering Fracture Mechanics, 1997, 58(1/2):11-28. DOI:10. 1016/s0013-7944(97) 00074-x.
    [8]
    Gurson A L. Continuum theory of ductile rupture by void nucleation and growth:part I-yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):2-15. DOI:10. 1115/1. 3443401.
    [9]
    Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1):157-169. DOI:10. 1016/0001-6160(84) 90213-x.
    [10]
    邢佶慧,郭长岚,张沛,等. Q235B钢材的微观损伤模型韧性参数校正[J]. 建筑材料学报,2015, 18(2):228-236.

    DOI:10. 3969/j. issn. 1007-9629. 2015. 02. 008.
    [11]
    黄学伟,赵军. 不同断裂模型在钢结构断裂破坏预测中的比较[J]. 建筑科学与工程学报, 2018, 35(1):93-101.

    DOI:10. 3969/j. issn. 1673-2049. 2018. 01. 012.
    [12]
    廖芳芳. 钢材微观断裂判据研究及在节点延性断裂预测中的应用[D]. 上海:同济大学,2012.
    [13]
    Chi W M, Kanvinde A M, Asce A M. Prediction of ductile fracture in steel connections using SMCS criterion[J]. Journal of Structural Engineering, 2006, 132(2):171-181. DOI:10. 1061/(ASCE) 0733-9445(2006) 132:2(171).
    [14]
    Kanvinde A M, Fell B V, Gomez I R, et al. Predicting fracture in structural fillet welds using traditional and micromechanical fracture models[J]. Engineering Structures, 2008, 30(11):3325-3335. DOI:10. 1016/j. engstruct. 2008. 05. 014.
    [15]
    刘希月,王元清,石永久. 基于微观机理的高强度钢材及其焊缝断裂预测模型研究[J]. 建筑结构学报, 2016, 37(6). DOI:10. 14006

    /j. jzjgxb. 2016. 06. 028.
    [16]
    Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217. DOI:10. 1016/0022-5096(69) 90033-7.
    [17]
    D'escatha Y, Devaux J C. Numerical study of initiation, stable crack growth and maximum load, with a ductile fracture criterion based on the growth of holes[J]. Elastic Plastic Fracture, 1979:229-248. DOI:10. 1520/STP35833S.
    [18]
    Myers A T, Kanvinde A M, Deierlein G G, et al. Probabilistic formulation of the cyclic void growth model to predict ultralow cycle fatigue in structural steel[J]. Journal of Engineering Mechanics, 2014, 140(6). DOI:10. 1061/(ASCE) EM. 1943-7889. 0000728.
    [19]
    Chaboche J L. Anisotropic creep damage in the frameuork of continum damage mechanics[J]. Nuclear Engineering and Design, 1984,79(3):309-319.
    [20]
    黄学伟,葛建舟,赵军,等. Q690D高强钢基于连续损伤模型的断裂破坏预测分析[J]. 工程力学, 2020, 37(2):230-240.

    DOI:10. 6052/j. issn. 1000-4750. 2019. 03. 0088.
    [21]
    茹继平, 杨娜, 杨庆山. 翼缘削弱型钢框架梁柱节点的性能研究综述[J]. 工程力学, 2004, 21(1):61-66.

    DOI:10. 3969/j. issn. 1000-4750. 2004. 01. 012.
  • Relative Articles

    [1]Yanxia Zhang, Tianhao Shi, Binglong Wu, Zhengqi Lin. Comparisons of Seismic Performance of Fully-Bolted Column Joints of Steel Tubular Columns with Built-in Cross-Shaped Core Barrels and Built-in Octagonal Core Tube[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(12): 38-48. doi: 10.13206/j.gjgS24011101
    [2]Zuowei Qin, Hui Li, Dong Han, Haiqiang Jiang. Structure Optimization and Performance Analysis of Box-Type Support Joint of L-Shaped Partially Coated Steel-Concrete Composite Column[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 7-13. doi: 10.13206/j.gjgS22082301
    [3]Faxing Ding, Luyu She, Linli Duan, Jianxiong Lei. Finite Element Analysis of Seismic Performance of Concrete-Filled Square Steel Tubular Column to Composite Beam Joint with Stiffening Ring Under High Axial Pressure[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(1): 29-40. doi: 10.13206/j.gjgS23072801
    [4]Yan Gao Guochang Li Xiao Li, . Finite Element Analysis of Pure Bending Properties of Square Steel Tube-Wood-Concrete Members[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 38-46. doi: 10.13206/j.gjgS23110202
    [5]Mengfei Li, Ho-Cheng Ho, Kwok-Fai Chung. Ductile Fracture Behaviour of Q690 High Strength Steel Under Monotonic Tensile Actions[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(5): 57-63. doi: 10.13206/j.gjgS24050108
    [6]HAN Ming-lan, SHI Jian-hua, SHI Zhen-hai, WANG Yan. Analysis on Seismic Properties of Embedded and Reinforced Prefabricated Connection with Cantilever Beam[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 1-12. doi: 10.13206/j.gjgS22110101
    [7]XING Zunsheng, YE Dongchen, ZHANG Zhihao, JIA Shangrui. Performance Analysis of Complex Cast Steel Joint in the Steel Roof of Hangzhou West Railway Station[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(2): 1-7. doi: 10.13206/j.gjgS22120101
    [8]Zhenhai Shi, Minglan Han, Yan Wang, Kuan Pang, Xu Wang. Analysis of Mechanical Properties of Joints and Frames with Cantilevered Beams Based on Joint Simplification Theory[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(3): 24-33. doi: 10.13206/j.gjgS22120501
    [9]Zhaobing Ren. Nonlinear Performance Analysis of Steel Reinforced Concrete Beam Column Joints in Yinchuan Green Space Center[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(9): 8-16. doi: 10.13206/j.gjgS22022202
    [10]Zhiyuan Jiang. Simulation Analysis of High-altitude Scattered Assembly Construction Process of a Long-span V-shaped Column[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(3): 35-42. doi: 10.13206/j.gjgS21101603
    [11]ZHONG Chang-jun, SHEN Rui-li, WANG Hui. Finite Element Analysis of Cable Saddle’s Mechanical Performance Considering the Influence of Cast Steel Material Inhomogeneity[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(11): 31-38. doi: 10.13206/j.gjgS20092001
    [12]Ganping Shu, Xiu Xu, Yueyan Gu, Qinglin Jiang, Baofeng Zheng. Study on the Lateral-Torsional Buckling of Duplex Stainless Steel Welded I-Section Flexural Members[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 1-25. doi: 10.13206/j.gjgSE20081701
    [13]Tang Qiang, Liu Qiang, Wang Liankun, Yang Huixian, Guo Yu, Yan Ziqiang, Wang Jicong. Analysis of Mechanical Performance of Steel Frames Composed of Non-Compact Members[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(11): 8-13. doi: 10.13206/j.gjgS20092302
    [14]Pang Lin, Sun Guohua, Dong Jiaying, Liao Qianwen. Analysis on the Hysteretic Behavior of Special Truss Moment Frame Connections[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(11): 14-21. doi: 10.13206/j.gjgS20081102
    [15]Qiang Xu, Haowen Liu, Wentao Qiao, Chao Wang. Finite Element Analysis on Seismic Behavior of A New Prefabricated Corrugated Steel Plate and Polyurethane Composite Shear Wall[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(12): 1-8. doi: 10.13206/j.gjgS21051102
    [16]Yi Xiang, ZABIHULLAH, Yu Shi, Xiaowei Ran, Rui Cheng. Axial Load Capacity of Cold-Formed Steel G-Section Columns[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(5): 1-9. doi: 10.13206/j.gjgS20030902
    [17]Dong Liu, Yongjiu Shi, Xianglin Yu, Chengliang Tu. Parametric Analyses on Lateral Performance About Modular Composite Shear Wall with Double Steel Plates and Infill Concrete[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(12): 43-49. doi: 10.13206/j.gjgS20120701
    [18]Zihan Jia, Xiantie Wang, Chuandong Xie, Jiaping Zhang, Yiwei Gu. Finite Element Analysis of Seismic Behavior of Self-Centering Concrete-Filled Square Steel Tubular Column-Steel Beam Joint with Slotted Energy Dissipation Plate[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(12): 1-7. doi: 10.13206/j.gjgS20091601
  • Cited by

    Periodical cited type(2)

    1. 张博,陈学文,白荣忍,杨怡思,郭乐乐,Akiyoshi Osaka. Ti6Al4V钛合金高温损伤模型及损伤机理. 材料热处理学报. 2022(09): 186-192 .
    2. 王卫永,王子琦,谭兴奎,庞士云,黄丹,黄永东. 冷弯加劲高强度钢梁受力性能及经济性分析. 钢结构(中英文). 2022(10): 32-42 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 82.5 %META: 82.5 %PDF: 4.1 %PDF: 4.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %其他: 1.5 %其他: 1.5 %China: 0.6 %China: 0.6 %[]: 0.9 %[]: 0.9 %上海: 2.3 %上海: 2.3 %上饶: 0.3 %上饶: 0.3 %保定: 0.6 %保定: 0.6 %北京: 2.3 %北京: 2.3 %南京: 0.6 %南京: 0.6 %南通: 0.3 %南通: 0.3 %厦门: 0.9 %厦门: 0.9 %天津: 0.3 %天津: 0.3 %太原: 0.3 %太原: 0.3 %宿州: 0.3 %宿州: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.6 %广州: 0.6 %张家口: 0.9 %张家口: 0.9 %扬州: 0.3 %扬州: 0.3 %昆明: 0.9 %昆明: 0.9 %杭州: 2.0 %杭州: 2.0 %武汉: 1.5 %武汉: 1.5 %法兰克福: 0.9 %法兰克福: 0.9 %济宁: 1.2 %济宁: 1.2 %深圳: 0.3 %深圳: 0.3 %渭南: 0.3 %渭南: 0.3 %漯河: 1.5 %漯河: 1.5 %秦皇岛: 0.6 %秦皇岛: 0.6 %绵阳: 1.2 %绵阳: 1.2 %芒廷维尤: 12.8 %芒廷维尤: 12.8 %西宁: 49.9 %西宁: 49.9 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.7 %运城: 1.7 %郑州: 0.3 %郑州: 0.3 %重庆: 0.9 %重庆: 0.9 %长沙: 0.3 %长沙: 0.3 %阳泉: 0.3 %阳泉: 0.3 %鞍山: 1.7 %鞍山: 1.7 %其他其他China[]上海上饶保定北京南京南通厦门天津太原宿州常州常德广州张家口扬州昆明杭州武汉法兰克福济宁深圳渭南漯河秦皇岛绵阳芒廷维尤西宁西安贵阳运城郑州重庆长沙阳泉鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (281) PDF downloads(15) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return