Yansheng Liu, Zhigang Ma, Qingxiang Li, Guanghai Cui. Structural Design of Xumi Mountain in the Second Phase Project of Zhejiang Buddhist College[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 16-23. doi: 10.13206/j.gjgS20061001
Citation: Yansheng Liu, Zhigang Ma, Qingxiang Li, Guanghai Cui. Structural Design of Xumi Mountain in the Second Phase Project of Zhejiang Buddhist College[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 16-23. doi: 10.13206/j.gjgS20061001

Structural Design of Xumi Mountain in the Second Phase Project of Zhejiang Buddhist College

doi: 10.13206/j.gjgS20061001
  • Received Date: 2020-06-10
    Available Online: 2021-08-21
  • The second phase project of Zhejiang Buddhist College is a large religious building constructed with modern architectural language. Xumi Mountain and Doushutian Palace are the core parts of the project. Xumi Mountain is a concrete shear wall structure with a cylindrical shape and a height of 56.85 m. A large platform is set on the top of Xumi Mountain, which is composed of 24 plane cantilever trusses. The maximum cantilever size of the truss is 22.5 m. The root of the cantilever truss is supported on 24 steel reinforced concrete columns arranged in a circular direction. Doushutian Palace is a steel frame structure with a height of 33 m. Its outermost steel column is vertically transformed by concrete ring beam, the middle steel column is connected with Xumi Mountain concrete cylinder through concrete corbel, and the innermost steel column falls on the long-span steel beam. The lower part of the project adopts concrete shear wall structure, while the upper part adopts steel frame structure. The stiffness difference between the upper and lower parts is large. It is a complex mixed structure, and has the characteristics of cantilever, conversion, floor opening and so on.
    The project seismic acceleration is taken as 7 degree (0.1g), damping ratio is 0.05 for concrete, 0.03 for steel structure. The site characteristic period is 0.20 s, the maximum value of horizontal seismic influence coefficient is 0.08, and the vertical earthquake is selected as 0.65 of horizontal seismic influence coefficient. The seismic grade of concrete shear wall is grade 3, and that of steel structure is grade 3.
    The whole model of Xumi Mountain and Doushutian Palace and the sub model only considering Xumi Mountain were calculated. The analysis results showed that the calculation results of the sub model were quite different from the overall model, and it was difficult to consider the interaction between steel structure and concrete structure in the sub model calculation. In order to ensure the safety and reliability of the design, the whole model and the sub model should be used to calculate and design according to the envelope force.
    The Xumi Mountain platform is composed of 24 plane cantilever steel trusses. The calculation results showed that the cantilever truss had large stiffness and high comfort. The first-order out of plane elastic buckling load coefficient of the cantilever steel truss could reach 19.1. According to the installation requirements of curtain wall, three rigid tie bars were added, and the overall stability of the cantilever steel truss met the requirements. In order to ensure the safety and reliability of stress under strong earthquake, the method of adding concrete ring beam to the root of cantilever steel truss was adopted to strengthen the structure.
    The small earthquake time-history analysis, fortification intensity earthquake and rare earthquake analysis were carried out. It showed that the seismic performance of the structure met the elastic requirements of fortification intensity earthquake, and the displacement angle between the lower layers of the structure met the requirements of the code. Only part of the members yield under the strong earthquake. The section of some yield members was increased, and the concrete beam with the transfer part bearing Doushutian Palace was strengthened by increasing the section and reinforcing bars.
  • [1]
    中华人民共和国住房和城乡建设部.建筑抗震设计规范: GB 50011—2010[S]. 北京:中国建筑工业出版社, 2010.
    [2]
    中华人民共和国住房和城乡建设部.建筑地基基础设计规范: GB 50007—2011[S]. 北京:中国建筑工业出版社, 2011.
    [3]
    冯清波, 陈忠.浙江佛学院二期工程(弥勒圣坛)地质勘察报告[R].宁波:宁波宁大地基处理技术有限公司, 2016.
    [4]
    中华人民共和国住房和城乡建设部.建筑结构荷载规范: GB 50009—2012[S]. 北京:中国建筑工业出版社, 2012.
    [5]
    中华人民共和国建设部.钢结构设计规范: GB 50017—2003[S]. 北京:中国计划出版社, 2003.
    [6]
    童根树.钢结构设计方法[M]. 北京:中国建筑工业出版社, 2007.
    [7]
    王剑文, 孙文波, 郑霖强.环肋型悬挑桁架在某体育场钢结构罩棚中的应用[J]. 钢结构(中英文), 2019, 34(7):49-53.
    [8]
    王红涛, 徐珂, 田立强.某体育场罩棚钢结构设计[J]. 钢结构, 2012, 27(6):32-36.
    [9]
    吴耀华, 张煜, 肖伟, 等.厦门国际会展中心大跨悬臂钢结构设计[J]. 钢结构, 2000, 15(2):1-5.
    [10]
    周旋.某超高层结构塔冠结构设计概况[J]. 四川建材, 2020, 46(7):64-66.
    [11]
    李光明, 高玉春.某超限高层结构设计与分析研究[J]. 中国勘察设计, 2020(7):99-101.
  • Relative Articles

    [1]Jingfeng Liu, Zhenming Chen, Hongli Yan, Minfang Wan, Lei Jiang. Research Progress and Practice of Steel Structure Connection Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 93-100. doi: 10.13206/j.gjgS24083026
    [2]Zhenming Chen, Peng Wang, Minfang Wan, Bing Lin. Engineering Practice of Steel Structure Intelligent Manufacturing Technology[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 80-86. doi: 10.13206/j.gjgS24083025
    [3]Xianshun Li, Kai Zhang. Comparative Study on Fireproofing Design of Steel Structures in Petrochemical Industry Between Chinese and American Standards[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(6): 42-47. doi: 10.13206/j.gjgS23041001
    [4]Xiaoshan Gu. Development and Practice of Steel Structure Technology for Industrial Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 40-45. doi: 10.13206/j.gjgS24101228
    [5]Shuxin Liu, Yongqian Zhang, Yuan Liu, Hongpeng Sun. Status and Prospect of Boiler Steel Structure Technology Development[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(11): 56-62. doi: 10.13206/j.gjgS24101036
    [6]Jiping Hao, Shaofan Chen, Junfen Yang. Further Discussion on the Development of Steel Structure Theory and the Evolution of Steel Structure Textbooks[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 77-83. doi: 10.13206/j.gjgS24092801
    [7]Bingchuan Tang, Jiepeng Liu. Development of Intelligent Manufacturing Technology for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(10): 119-126. doi: 10.13206/j.gjgS24052122
    [8]Li Ding, Shangrui Jia, Chuqiao Wu, Changsen Xu. Research on Key Technologies of Cantilever Lifting of Large Cantilever Spoke Truss Structure with Inner Support[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(4): 34-40. doi: 10.13206/j.gjgS23013101
    [9]Wenzhong Wu. Stochastic Response and Controlling to Earthquake Wave in Compound Periodic Steel Structure[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(12): 48-53. doi: 10.13206/j.gjgS23063004
    [10]ZHANG Jin, WANG Li-jun, YANG Lyu-lei, GONG Min-feng. Discussion and Improvement Research on Performance-Based Seismic Design Method for Steel Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(1): 37-65. doi: 10.13206/j.gjgS22121903
    [11]Xiaodun Wang, Jincheng Jiang, Zhihua Chen, Yang Liu. Research on Key Technology of Design and Construction of Simple Fabricated Special-Shaped Column and Its Steel Frame Structure System in Villages and Towns[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(9): 37-44. doi: 10.13206/j.gjgS22092801
    [12]Zhaoxin Hou, Chao Gong, Jinlin Chen, Shuang Wang, Zhaoxiang Liu. Fully Prefabricated and Assembled Modular Buildings and Their Structural Design Strategies[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(10): 49-58. doi: 10.13206/j.gjgS23083102
    [13]Lingxiao Zuo, Weitong Yi, Lei Zhu, Donglin Lyu, Hailin Sun. Methods for Determining Ultimate Bearing Capacity of Steel Beam-Column Joints Based on Moment-Rotation Curves[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(5): 18-27. doi: 10.13206/j.gjgS22031101
    [14]Chuang Zhao, Wenyan Zhao, Zuosheng Cao, Changgang Liu. Research on Integral Lifting of Floating Truss Structure Based on Ring Hoop Reinforcement System[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(7): 41-51. doi: 10.13206/j.gjgS22021001
    [15]Heng Kou, Qianrui Chen, Yu Song, Wenkai Chen, Peihong Chi. Dynamic Response Analysis of Steel Structure Based on the Combination of Vibration Reduction and Isolation[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(8): 17-25. doi: 10.13206/j.gjgs21111802
    [16]Meijing Liu, Shaoru Zeng, Shenggang Fan. Analysis and Design of Complex Steel Structure of High-Rising Sightseeing Tower[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 56-63. doi: 10.13206/j.gjgS20080502
    [17]Huimin Fu, Bin Ma, Longgui Bu, Yong Wang, Qing Zuo, Duomin Wang, Zhenyong Guo, Wenping Wu, Jianhua Li. Structural Design of Qinghe Station[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 7-15. doi: 10.13206/j.gjgS20072302
    [18]Fei Yin, Lu Yang, Gang Shi, Xiaolin Li. OVERVIEW OF RESEARCH PROGRESS FOR SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL STRUCTURES[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(3): 1-25. doi: 10.13206/j.gjgSE20010805
    [19]Yinquan Yu, Fengqi Zhu, Zhe Wang. Review of the Promotion and Application of Steel Structures in Construction[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(1): 59-69. doi: 10.13206/j.gjgSE19112602
    [20]Ruifeng Li, Xinhua Liu, Guojun Xu. Design Theory Method of Staggered Truss Structure and Research on Assembled Integration Technology Application[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(11): 55-64. doi: 10.13206/j.gjgS20042601
  • Cited by

    Periodical cited type(1)

    1. 赵峥. 钢结构梁柱加固节点框架损伤演化过程数值模拟分析. 粉煤灰综合利用. 2024(03): 125-130 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.2 %FULLTEXT: 10.2 %META: 81.4 %META: 81.4 %PDF: 8.4 %PDF: 8.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.1 %其他: 15.1 %China: 1.1 %China: 1.1 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.7 %上海: 2.7 %佛山: 0.2 %佛山: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 1.6 %北京: 1.6 %十堰: 0.2 %十堰: 0.2 %南京: 0.4 %南京: 0.4 %南昌: 0.4 %南昌: 0.4 %台州: 0.2 %台州: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %孔敬: 0.2 %孔敬: 0.2 %宁波: 2.2 %宁波: 2.2 %宿州: 0.2 %宿州: 0.2 %常州: 0.4 %常州: 0.4 %常德: 0.2 %常德: 0.2 %广州: 1.3 %广州: 1.3 %张家口: 1.3 %张家口: 1.3 %徐州: 0.4 %徐州: 0.4 %扬州: 0.4 %扬州: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.4 %晋城: 0.4 %杭州: 2.4 %杭州: 2.4 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.7 %沈阳: 0.7 %济南: 0.9 %济南: 0.9 %海口: 0.4 %海口: 0.4 %深圳: 0.7 %深圳: 0.7 %温州: 0.2 %温州: 0.2 %湛江: 0.4 %湛江: 0.4 %漯河: 1.1 %漯河: 1.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.2 %苏州: 0.2 %衢州: 0.7 %衢州: 0.7 %西宁: 39.7 %西宁: 39.7 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.3 %运城: 1.3 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.1 %郑州: 1.1 %重庆: 1.3 %重庆: 1.3 %长沙: 0.4 %长沙: 0.4 %香港: 0.4 %香港: 0.4 %其他ChinaUnited States[]上海佛山兰州北京十堰南京南昌台州嘉兴天津太原孔敬宁波宿州常州常德广州张家口徐州扬州昆明晋城杭州武汉沈阳济南海口深圳温州湛江漯河秦皇岛绍兴芒廷维尤芜湖芝加哥苏州衢州西宁西雅图贵阳运城邯郸郑州重庆长沙香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (365) PDF downloads(39) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return