Volume 35 Issue 4
Jun.  2020
Turn off MathJax
Article Contents
Hongkun Lyu, Menglong Liu, Wei Chi, Mingjun Wang, Kun Luo, Mingliang Ying, Jianren Fan. Progress in Numerical Simulation Study of Wind-Induced Response of Transmission Towers[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(4): 1-10. doi: 10.13206/j.gjgS20051202
Citation: Hongkun Lyu, Menglong Liu, Wei Chi, Mingjun Wang, Kun Luo, Mingliang Ying, Jianren Fan. Progress in Numerical Simulation Study of Wind-Induced Response of Transmission Towers[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(4): 1-10. doi: 10.13206/j.gjgS20051202

Progress in Numerical Simulation Study of Wind-Induced Response of Transmission Towers

doi: 10.13206/j.gjgS20051202
  • Received Date: 2020-02-20
  • Transmission tower is an important load-bearing facility of transmission line, and its safety is directly related to the normal operation of the national grid and transmission line. Wind-induced response of transmission towers is mainly studied by field measurement, wind tunnel test and numerical simulation. With the development of computer technology and numerical methods, numerical simulation analysis on wind-induced response of transmission towers begins to be widely adopted and significant achievements were gained. Wind load model and structure model are established, then the structure dynamic response characteristics and the corresponding wind vibration control method are studied in related numerical simulation research, so progress of wind-induced response numerical simulation research of transmission tower is summarized from wind load model, structure model and dynamic response characteristics and wind vibration control research in this article.
    The mean wind and fluctuating wind model of wind field in the ground layer is the basis of building structure wind load. The wind speed profile model used for the mean wind mainly includes exponential and logarithmic wind speed profile model, while the fluctuating wind is mainly simulated according to turbulent wind power spectrum. Under different extreme weather conditions, wind field shows different characteristics from normal wind. The corresponding mean and fluctuating wind models need to be further studied according to the actual situation. The wind load of transmission tower also needs relevant structural parameters, in which the wind resistance effect of tower structure and the shielding effect between tower components can be studied by flow field simulation.
    When building the transmission tower finite element model, the transmission tower can be regarded as the rigid frame structure and the truss-beam structure, while the error of simulation by using the truss model is large. In addition to wind load and other external environmental loads, the influence of transmission line on tower structure should also be considered, so the tower-line coupling system should be established to simulate the actual structure characteristics of transmission tower. In the process of building the finite element model of tower-line system, the catenary theory and the horizontal tension of conductor can be used to model and shape the conductor.
    Based on the wind load model and the structural model, the wind-induced response of transmission tower can be analyzed. The dynamic characteristics of the structure have important effects on the wind-induced response, and the effect of the conductor on the tower makes dynamic characteristics of tower-line system more complex. For the wind load of tower under different wind direction, the relevant codes have corresponding calculation coefficient and distribution coefficient. For the tower-line coupling system, the wind direction has more significant effects on the wind-induced response.
    According to whether external energy input is needed, wind-induced vibration control can be divided into active control, passive control and hybrid control. So far passive control, especially tuned mass damper, is still the main method for wind-induced vibration control of transmission tower. The natural frequency of damper should be consistent with the natural frequency of tower, then the wind-induced vibration control works best. However, the optimization of wind-induced vibration control is more complicated due to tower-line coupling effect.
    Besides, future research direction was prospected. Further research on wind field characteristics of special weather, development of more reliable finite element modeling methods, further study of tower torsional and along-line response characteristics, and optimization of TMD design parameters and layout should be important research directions in the future.
  • loading
  • 侯亿晖. 输电塔风振响应分析及结构内力计算[D]. 成都:西南交通大学, 2016.
    《中国电力教育》杂志社. 国内外自然灾害造成的电力系统事故[J]. 中国电力教育, 2008(6):12-14.
    朱晓颖. 图:江苏巨风导致镇江输电塔倒伏受损[EB/OL].[2009-06-15]. http://www.chinanews.com/tp/news/2009/06-15/1734388.shtml.
    那鹏翔. 黑龙江省肇东两输电铁塔折倒造成火车停运3小时(图)[EB/OL].[2014-05-29

    ]. https://heilongjiang.dbw.cn/system/2014/05/29/055755742.shtml.
    王东. 角钢输电塔风荷载作用模式研究[D]. 杭州:浙江大学, 2013.
    白海峰. 输电塔线体系环境荷载致振响应研究[D]. 大连:大连理工大学, 2007.
    王骞. 风荷载下大跨越输电塔-线体系振动控制分析[D]. 济南:山东大学, 2014.
    屈讼昭. 国内外输电塔风荷载技术标准比较分析[J]. 电力建设, 2013, 34(5):22-29.
    贺博, 修娅萍, 赵恒,等. 强台风下高压输电线路塔-线耦联体系的力学行为仿真分析二:动力响应分析[J]. 高压电器, 2016, 52(4):42-47.
    贺博, 修娅萍, 赵恒,等. 强台风下高压输电线路塔-线耦联体系的力学行为仿真分析三:动静力响应对比[J]. 高压电器, 2016, 52(4):48-53.
    潭彪. 风谱对输电塔响应影响及气动阻尼研究[D]. 重庆:重庆大学, 2016.
    白海峰, 刘兴. 顺风作用下输电塔疲劳可靠度分析[J]. 空间结构, 2017, 23(1):80-86.
    楼文娟, 段志勇, 金晓华,等. 风速水平空间相关性对长横担输电塔风效应的影响[J]. 振动与冲击, 2014, 33(13):63-66.
    杨文刚, 王璋奇, 朱伯文,等. 特高压单柱拉线塔塔线体系风致响应时程分析[J]. 中国电机工程学报, 2015, 35(12):3182-3191.
    Dua A, Clobes M, Höbbel T. Dynamic analysis of overhead transmission line under turbulent wind loading[J]. Electronic Journal of Structural Engineering, 2015, 15(1):46-54.
    党会学, 赵均海, 张宏杰,等. 三角形格构式塔身体型系数及屏蔽特性研究[J]. 计算力学学报, 2016, 33(3):362-368.
    谢华平, 何敏娟, 马人乐. 基于CFD模拟的格构塔平均风荷载分析[J].中南大学学报(自然科学版),2010, 41(5):1980-1986.
    Jonas A, Jan M, Giacomo A, et al. Porous and geometry-resolved CFD modelling of a lattice transmission tower validated by drag force and flow field measurements[J]. Engineering Structures, 2018, 168:462-472.
    胡尚瑜, 宋丽莉, 李秋胜. 近地边界层台风观测及湍流特征参数分析[J]. 建筑结构学报, 2011, 32(4):1-8.
    张传雄. 台风作用下高层建筑的风场和风效应原型实测研究[D]. 长沙:湖南大学, 2018.
    徐旭, 刘玉. 高耸结构在台风作用下的动力响应分析[J]. 建筑结构, 2009, 39(6):105-109.
    张志强, 安利强, 庞松岭,等. 基于塔线体系模型的沿海输电铁塔抗风性能研究[J]. 电力科学与工程, 2016, 32(11):74-78.
    An L Q, Wu J, Zhang Z Q, et al. Failure analysis of a lattice transmission tower collapse due to the super typhoon Rammasun in July 2014 in Hainan Province, China[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182:295-307.
    安利强,张志强,黄仁谋,等. 台风作用下输电塔线体系动力响应分析[J]. 振动与冲击, 2017, 36(23):255-262.
    El Damatty A A, Hamada A. F2 tornado velocity profiles critical for transmission line structures[J]. Engineering Structures, 2016, 106:436-449.
    Yang F, Zhang H. Two case studies on structural analysis of transmission towers under downburst[J]. Wind and Structures, 2016, 22(6):685-701.
    杨风利, 张宏杰, 杨靖波,等. 下击暴流作用下输电铁塔荷载取值及承载性能分析[J]. 中国电机工程学报,2014, 34(24):4179-4186.
    Tian L, Zeng Y J, Fu X. Velocity ratio of wind-driven rain and its application on a transmission tower subjected to wind and rain loads[J]. Journal of Performance of Constructed Facilities, 2018, 32(5):1-10.
    Fu X, Li H N, Li G. Fragility analysis and estimation of collapse status for transmission tower subjected to wind and rain loads[J]. Structural Safety, 2016, 58:1-10.
    Fu X, Li H N, Yang Y B. Calculation of rain load based on single raindrop impinging experiment and applications[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147:85-94.
    Fu X, Li H N, Yi T H. Research on motion of wind-driven rain and rain load acting on transmission tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 139:27-36.
    尹飞鸿. 有限元法基本原理及应用[M]. 北京:高等教育出版社, 2010:1-2.
    康渭铧. 输电线路铁塔参数化建模技术研究[D]. 宜昌:三峡大学, 2012.
    陈建稳, 袁广林, 刘涛, 等. 数值模型对输电铁塔内力和变形的影响分析[J]. 山东科技大学学报(自然科学版), 2009, 28(1):40-45.
    钱程,沈国辉,郭勇,等. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6):1082-1089.
    卢哲刚, 姚谏. 向量式有限元:一种新型的数值方法[J]. 空间结构, 2012, 18(1):85-91.
    姚旦, 沈国辉, 潘峰, 等. 基于向量式有限元的输电塔风致动力响应研究[J]. 工程力学, 2015, 32(11):63-70.
    Liang S, Zou L, Wang D, et al. Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system[J]. Engineering Structures, 2015, 85:63-72.
    Deng H Z, Xu H J, Duan C Y, et al. Experimental and numerical study on the responses of a transmission tower to skew incident winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157:171-188.
    熊希. 基于导线张力信息的架空输电导线舞动分析方法研究[D]. 北京:华北电力大学, 2015.
    张旺海, 于建斌. 基于ANSYS的架空输电导线找形研究[J]. 电力建设, 2012, 33(2):32-35.
    王新敏. ANSYS工程结构数值分析[M]. 北京:人民交通出版社, 2007:467-471.
    岳培根. 高压输电塔线体系的风致动力响应分析[D]. 郑州:郑州大学, 2014.
    李天昊. 输电导线气动力特性及风偏计算研究[D]. 杭州:浙江大学, 2016.
    孔贝贝, 张都清, 白雪, 等. 输电塔及其塔线耦合体系的模态分析研究[J]. 现代制造技术与装备, 2013(1):3-4, 13.
    郝淑英, 马丽君, 王磊, 等. 输电塔线体系模态分析[J]. 天津理工大学学报, 2014, 30(5):9-12.
    孟遂民, 卢银均, 祝一帆, 等. 输电铁塔及塔线耦合体系动态特性研究[J]. 三峡大学学报(自然科学版), 2016, 38(3):69-72.
    Tian L, Pan H Y, Qiu C X, et al. Wind-induced collapse analysis of long-span transmission tower-line system considering the member buckling effect[J]. Advances in Structural Engineering, 2018, 22(1):30-41.
    He B, Zhao M, Feng W, et al. A method for analyzing stability of tower-line system under strong winds[J]. Advances in Engineering Software, 2019, 127:1-7.
    金新阳, 陈凯, 唐意, 等. 建筑风工程研究与应用的新进展[J]. 建筑结构, 2011, 41(11):111-117.
    张庆华, 顾明. 基于高频天平测力实验的500 kV单回路输电塔风致响应研究[J]. 振动与冲击, 2014, 33(4):156-160.
    张庆华, 马文勇. 多回路高压输电塔典型横担结构风力系数风洞试验研究[J]. 振动与冲击, 2016, 35(16):158-163.
    张俊卫. 超高层建筑的风致横风向响应分析和TMD控制[D]. 大连:大连理工大学, 2014.
    Den Hartog J P. Mechanical vibrations[M]. New York:McGraw-Hill, 1956:215-220.
    柳国环, 李宏男. 高压输电塔-线体系风致动力响应分析与优化控制[J]. 中国电机工程学报, 2008, 28(19):131-137.
    陶天友. 大跨度三塔连跨悬索桥风致抖振及其MTMD控制研究[D]. 南京:东南大学,2015.
    高翔, 朱峰, 刘宁, 等. 输电塔-线体系风雨致振控制研究[J]. 工业建筑, 2016, 46(1):173-178.
    梁龙腾. 基于TMD的高压输电杆塔风振控制研究[D]. 长沙:长沙理工大学, 2016.
    Tian L, Gai X. Wind-induced vibration control of power transmission tower using pounding tuned mass damper[J]. Journal of Vibroengineering, 2015, 17(7):3693-3701.
    马涌泉, 邱洪兴. 输电塔-线体系风致响应的鲁棒半主动控制[J]. 东北大学学报(自然科学版), 2016, 37(2):279-284.
    高铭尚. 风荷载作用下输电塔结构MATLAB、ANSYS联合主动控制数值模拟研究[D]. 西安:西安建筑科技大学, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (585) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return