Volume 35 Issue 8
Oct.  2020
Turn off MathJax
Article Contents
Jingwei Zhu, Gongfeng Xin, Chuanchang Xu, Heng Zhang, Yue Wang. Analysis of Flexural Behavior of Steel-UHPC Composite Girders Based on Plastic Damage Model[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(8): 24-32. doi: 10.13206/j.gjgS20051001
Citation: Jingwei Zhu, Gongfeng Xin, Chuanchang Xu, Heng Zhang, Yue Wang. Analysis of Flexural Behavior of Steel-UHPC Composite Girders Based on Plastic Damage Model[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(8): 24-32. doi: 10.13206/j.gjgS20051001

Analysis of Flexural Behavior of Steel-UHPC Composite Girders Based on Plastic Damage Model

doi: 10.13206/j.gjgS20051001
  • Received Date: 2020-05-20
  • A steel-UHPC composite girder is a new girder type whose steel girder is connected to a UHPC slab by shear connectors. Compared to the steel-conventional composite girder, the slab thickness of steel-UHPC composite girder can be greatly reduced due to the ultrahigh strength mechanical properties of UHPC, which decreases significantly the structural weight and enhances the spanning ability. As a result of high tensile strength and strong self-healing ability of micro cracks of UHPC, the steel-UHPC composite girder improves the flaws of the bridge slab existing in steel-conventional composite girders to some extent, such as being prone to crack under external loads in the negative bending moment area and insufficient durability for concrete slab, which greatly improve the safety performance and reduce the maintenance cost for steel-concrete composite girders on the basis of ensuring the good durability of structure. At present, only few studies on the refined mechanical model and numerical analysis for steel-UHPC composite girders have been reported. Additionally, there is still no such an unified theoretical model that can describe compressively the constitutive relationship of UHPC because of the complexity of UHPC materials.
    To conduct a refined numerical model and to investigate the flexural behavior of steel-UHPC composite girders, the damage factor was deduced based on the selected uniaxial tension and compression constitutive relation for UHPC. A numerical model of damage mechanics corresponding to a tested steel-UHPC composite girder failed by flexure was established by ABAQUS finite element program, whose applicability is analyzed by comparing the mechanical properties to the test girder. Taking the UHPC slab thickness, the web slenderness and the tension flange thickness as the main structural parameters, the mechanical properties in the whole process of bending failures for 36 numerical model steel-UHPC composite girders were analyzed.
    The model validation analysis showed that the response trend of load-displacement curve from numerical calculation was in good agreement with that of the test curve before the failure stage. After the failure stage different from the rapid failure of the test girder, the model girder obtained a more complete load-displacement curve including failure stage and descending stage, showing a good ductility performance. The damage evolution characteristics of the UHPC slab from the numerical calculations were in good agreement with the test results. In General, the load-displacement curve and damage evolution characteristics of the UHPC slab from the numerical calculations were in good agreement with the test results, and therefore the established numerical model can simulate accurately the mechanical behavior of the whole failure process of steel-UHPC composite girders, and reveal truly the stress and strain field transfusions and the damage evolution characteristics of cracking and collapse of the UHPC slab. The flexural strength of steel-UHPC composite girders under unit steel consumption increases greater by increasing the web slenderness than that by increasing the tension flange thickness. However, increasing the UHPC slab thickness has a relatively small effect on the improvement of flexural strength for steel-UHPC composite girders. As the tension flange thickness increases, the ratio of elastic flexural strength to ultimate flexural strength for steel-UHPC composite girders increases significantly, but at the same time, the ductility ability of girders reduces to some extent. On the premise of meeting the ductility demand, the distribution of flexural strength in different working stages of composite girders can be effectively adjusted by changing the tension flange thickness to meet different flexural strength demands of structure.
  • loading
  • 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(12):33-43.
    孙秀贵, 王甜, 曾满良, 等. 不同桥面形式的钢箱加劲梁受力性能比较研究[J]. 钢结构, 2018, 33(8):71-74

    , 89.
    陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3):1-24.
    邵旭东, 周环宇, 曹君辉. 钢-薄层RPC组合桥面结构栓钉的抗剪性能[J]. 公路交通科技, 2013, 30(4):35-39.
    刘君平, 徐帅, 陈宝春. 钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究[J]. 工程力学, 2018, 35(11):92-98.
    张彦玲, 王元清, 季文玉. 钢-活性粉末混凝土简支组合梁正截面破坏模式[J]. 铁道科学与工程学报, 2009, 11(6):10-15.
    丁楠, 邵旭东. 轻型组合桥面板的疲劳性能研究[J]. 土木工程学报, 2015, 48(1):74-81.
    张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58.
    杨剑, 方志. 超高性能混凝土单轴受压应力-应变关系研究[J]. 混凝土, 2008(7):11-15.
    过镇海. 钢筋混凝土原理[M]. 3版. 北京:清华大学出版社,2017.
    Jorgen G O, Roger G S, Fisher J W. Shear strength and steel connectors in lightweight and normal weight concrete[J]. AISC Engineering Journal, 1971, 8(2):55-64.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (167) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return