Liang Sun. Research on Stability of Curved Steel Pylon of Cable-Stayed Bridge[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 47-55. doi: 10.13206/j.gjgS20031401
Citation: Liang Sun. Research on Stability of Curved Steel Pylon of Cable-Stayed Bridge[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 47-55. doi: 10.13206/j.gjgS20031401

Research on Stability of Curved Steel Pylon of Cable-Stayed Bridge

doi: 10.13206/j.gjgS20031401
  • Received Date: 2020-07-09
    Available Online: 2021-05-08
  • Curved steel pylon of cable-stayed bridge has the characteristics of complex cable shape, large overall slenderness ratio, and the overall structure is composed of thin-walled members. Its stability has become the key control factor of structural design. In order to research the stability of the curved steel pylon under the main vertical loads such as dead weight, dead load of the bridge superstructure from the cable system and vehicle load, further clarify the element type selection, instability mode and stress characteristics, a curved steel pylon cable-stayed bridge with a span of ( 200+ 200) m is taken as the research object, and the ANSYS general finite element software is used to establish a spatial beam element model and a spatial shell element model for the steel pylon. The model is numerically calculated and analyzed for its stability to obtain the instability mode and instability critical load in the elastic state, as well as the ultimate bearing capacity, the stress distribution, structural deformation in the ultimate bearing capacity state after considering the influence of nonlinear factors. In the spatial beam element model, Beam 4 element is used to simulate the main girder of the cable-stayed bridge as a fishbone model, Link 10 element is used to simulate the cable and the initial tension is applied, and Beam 188 element is used to simulate the pylon. In the spatial shell element model, the main beam and cable are simulated in the same way as the beam element model, and Shell 143 element is used to simulate the pylon according to the actual structure. The material nonlinear simulation of Q345 steel used in the pylon adopts the MKIN model, and the first-order buckling mode obtained in the first type of stability analysis is taken as the shape of the initial geometric defect of the structure.
    Through calculating:1) The first type stability safety factor of the pylon calculated using the beam element model is 94. 51, and the second type stability safety factor, which considering the effects of double nonlinearity and structural initial defects, is 19. 89. The first type of stable instability mode of the pylon calculated by the spatial shell element model is firstly shown as local out-of-plane buckling of the wall plate, the corresponding stability safety factor is 25. 15, and the stability safety factor is 61. 42 in case of overall instability; 2) The second type of stability has a minimum safety factor of 12. 90, and the instability mode is local instability. The stress and elastic strain concentration areas of the outer wall and stiffeners of the pylon are mainly located in the middle of the cable. The stress and elastic strain concentration area of the stiffeners, middle webs and diaphragm inside the pylon is mainly located at the diaphragm at the cable, and the plastic strain inside the pylon is mainly concentrated in the cable anchorage area of the diaphragm. The two types of instability modes of the steel pylon calculated by the shell element model are local buckling, and the corresponding buckling load characteristic value is much smaller than that of the overall instability. It is necessary to pay attention to the stress and deformation of key parts such as the wall plate and the inner anchorage zone of the pylon when making stability and safety judgment.

  • 王茜,王春生,俞欣,等. 钢桥塔局部稳定试验与数值分析[J]. 长安大学学报(自然科学版),2008,28(5):67-72.
    李立峰,邵旭东,易伟建,等. 扁平钢箱梁局部稳定模型试验[J]. 中国公路学报,2007,20(3):60-65.
    王春生,王茜,俞欣,等. 钢桥塔节段局部稳定试验[J]. 中国公路学报,2009,22(6):74-81.
    雷宇,黎曦. 大跨度组合梁斜拉桥全过程稳定性研究[J]. 公路交通科技,2009,26(10):71-75.
    李国豪. 桥梁结构稳定与振动(修订版)[M]. 北京:中国铁道出版社,2002.
    罗晓峰,项贻强,颜东煌,等. 斜拉桥桥塔稳定性实用计算方法[J]. 公路交通科技,2011,28(9):60-65.
    朱慈勉,沈祖炎. 薄壁柱相关屈曲分析的混合有限元模型[J]. 同济大学学报,1997,25(1):11-16.
    沈祖炎,张其林. 薄壁钢构件非线性稳定问题的曲壳有限单元法[J]. 土木工程学报,1991,24(1):32-43.
    季跃. 铝合金球面网壳结构弹塑性稳定性研究[J]. 工业建筑, 2018,48(2):158-162.
    赵人达,邹建波,吕梁,等. 大跨度叠合梁斜拉桥非线性稳定研究[J]. 建筑科学与工程学报,2018,35(4):11-18.
    康孝先,强士中. 初始缺陷对板钢结构极限承载力的影响分析[J]. 工程力学,2009,26(6):105-110.
    黄逸群,尹越,王震,等. 矩形截面空间钢管桁架整体稳定实用设计方法[J]. 钢结构,2018,33(9):75-78.
    陈骥. 钢结构稳定理论与设计[M]. 6版. 北京:科学出版社,2014.
    卜一之,赵雷, 李乔. 苏通长江大桥结构非线性稳定性研究[J]. 土木工程学报,2013,46(1):84-91.
  • Relative Articles

    [1]Liang Hu, Ziming Yang, Xu Zhan, Ju Chen. Numerical Analysis on Seismic Behavior of Steel Tubular Column-Shear Wall Transformation Nodes[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(9): 24-33. doi: 10.13206/j.gjgS23072702
    [2]Zengmei Qiu Zixuan Ye Guochang Li Runze Liu, . Finite Element Analysis on the Concrete-Filled Square Steel Tubular Pure Bending Members Encased with CFRP Profile Under Cyclic Loading[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 29-37. doi: 10.13206/j.gjgS23102102
    [3]Genshu Tong. Evolution of Notional Load Approach[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(7): 42-44. doi: 10.13206/j.gjgS23041022
    [4]Hongliang Xiu. Experimental Study of Steel-UHPC Sheet with Large Diameter Stud Interface Connection[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(3): 34-42. doi: 10.13206/j.gjgS23010201
    [5]Gang Wang, Xiaolin Lin, Caiqi Zhao, Zongyi Jiang. The Study on Axial Stiffness Model of Aluminum Alloy Gusset Joints[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(4): 14-19. doi: 10.13206/j.gjgS22030101
    [6]ZHANG Zai-chen, JIA Xin-juan, HU Chen-xi, MO Hai-zhao. Common Installation Methods and New Ideas of Long-Span Spatial Grid Structures[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(10): 43-49. doi: 10.13206/j.gjgS21100901
    [7]Guifeng Lin. Construction Technology of Mid-span Jacking Closure of Long-span Hybrid Beam Cable-stayed Bridge[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(3): 43-49. doi: 10.13206/j.gjgS21052502
    [8]Hongsheng Liu, Yongchuan Luo, Shaohui Han, Qinghua Zhang. Study on Effect of UIT on Welded Residual Stress of Innovative Doubly-Welded Rib-to-Deck Joint in Orthotropic Steel Decks[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(10): 25-33. doi: 10.13206/j.gjgs20092301
    [9]Kening Hu, Houdeng Zhang, Fan Wu, Zhixing Zhou. Research on the Fatigue Performance of Rib-to-Deck Welded Joints of Wujiagang Yangtze River Bridge[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(10): 34-41. doi: 10.13206/j.gjgs20092801
    [10]Weijia Xu, Xiaomei Ning, Ruoqiang Feng, Penghui Xu. Research on Lateral Performance of New Type Cold-Formed Steel Framed Shear Walls with Steel Sheathing and Gypsum Board[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 38-46. doi: 10.13206/j.gjgS20050201
    [11]Bida Pei, Lianhua Wang, Lifeng Li. Fatigue Assessment and Fatigue Test of the Full-Scale Model of Tensile Anchor Plate of Cable-Stayed Bridges[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(10): 50-59. doi: 10.13206/j.gjgs20112801
    [12]Ji Zhou, Xinguo Wang, Cheng Li, Xianyi Cheng. Study on the Design of Main Girder of Wide Steel Box Girder Cable-Stayed Bridge with Single-Column Pylon[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(5): 47-54. doi: 10.13206/j.gjgS20062801
    [13]Subhash Pantha, Weijie Zhang, Feiyu Liao, Jian Zhou, Menglu Ren. Research on Design Methods of Load-Carrying for Circular Concrete Filled Stainless Steel Tube Beam Columns[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(5): 27-33. doi: 10.13206/j.gjgS20021801
    [14]Hongkun Lyu, Menglong Liu, Wei Chi, Mingjun Wang, Kun Luo, Mingliang Ying, Jianren Fan. Progress in Numerical Simulation Study of Wind-Induced Response of Transmission Towers[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(4): 1-10. doi: 10.13206/j.gjgS20051202
  • Cited by

    Periodical cited type(5)

    1. 王欢,康玲,牟廷敏,陈明. 空间异形桥塔的稳定极限承载力计算方法. 公路交通科技. 2024(04): 110-119 .
    2. 孙亮. 空间弯扭曲线钢桥塔的设计与施工. 城市道桥与防洪. 2022(02): 94-97+113+16 .
    3. 左志超,郑凯锋,陈婧雯. 公路大跨度斜拉桥独柱钢塔整体稳定性分析. 四川建筑. 2022(05): 145-148+152 .
    4. 孔丹丹,于晓坤,郝向炜,于莹,顾子丰. 杆件局部失稳对钢桁架拱桥整体稳定性的影响. 东北林业大学学报. 2021(07): 116-121 .
    5. 白伦华,沈锐利,苗如松,张兴标,王路. 箱梁与缆索承重桥梁理论2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 43-52 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.7 %FULLTEXT: 23.7 %META: 72.4 %META: 72.4 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.1 %其他: 6.1 %China: 5.0 %China: 5.0 %Czech Republic: 0.5 %Czech Republic: 0.5 %上海: 0.8 %上海: 0.8 %东莞: 0.2 %东莞: 0.2 %佛山: 0.8 %佛山: 0.8 %北京: 2.9 %北京: 2.9 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南昌: 0.5 %南昌: 0.5 %厦门: 0.2 %厦门: 0.2 %台州: 0.8 %台州: 0.8 %哥伦比亚: 0.2 %哥伦比亚: 0.2 %天津: 0.3 %天津: 0.3 %宣城: 0.2 %宣城: 0.2 %宿州: 0.2 %宿州: 0.2 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 3.1 %张家口: 3.1 %成都: 0.6 %成都: 0.6 %扬州: 0.5 %扬州: 0.5 %昆明: 0.3 %昆明: 0.3 %晋城: 0.8 %晋城: 0.8 %杭州: 1.0 %杭州: 1.0 %武汉: 1.6 %武汉: 1.6 %沈阳: 0.3 %沈阳: 0.3 %泉州: 0.3 %泉州: 0.3 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.5 %秦皇岛: 0.5 %芒廷维尤: 10.8 %芒廷维尤: 10.8 %芝加哥: 0.3 %芝加哥: 0.3 %衢州: 0.3 %衢州: 0.3 %西宁: 55.8 %西宁: 55.8 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.8 %运城: 0.8 %郑州: 0.2 %郑州: 0.2 %重庆: 0.2 %重庆: 0.2 %长沙: 0.5 %长沙: 0.5 %阳泉: 1.3 %阳泉: 1.3 %青岛: 0.3 %青岛: 0.3 %马里科帕: 0.2 %马里科帕: 0.2 %其他ChinaCzech Republic上海东莞佛山北京十堰南京南昌厦门台州哥伦比亚天津宣城宿州常州常德平顶山广州张家口成都扬州昆明晋城杭州武汉沈阳泉州石家庄秦皇岛芒廷维尤芝加哥衢州西宁贵阳运城郑州重庆长沙阳泉青岛马里科帕

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (447) PDF downloads(25) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return