Yi Xiang, ZABIHULLAH, Yu Shi, Xiaowei Ran, Rui Cheng. Axial Load Capacity of Cold-Formed Steel G-Section Columns[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(5): 1-9. doi: 10.13206/j.gjgS20030902
Citation: Yi Xiang, ZABIHULLAH, Yu Shi, Xiaowei Ran, Rui Cheng. Axial Load Capacity of Cold-Formed Steel G-Section Columns[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(5): 1-9. doi: 10.13206/j.gjgS20030902

Axial Load Capacity of Cold-Formed Steel G-Section Columns

doi: 10.13206/j.gjgS20030902
  • Received Date: 2020-03-09
  • Publish Date: 2020-07-14
  • Cold-formed thin-walled steel columns can be made into many sections, of which the U-section (also called channel section) and C-section are the most commonly used and studied. However, although the cold-formed thin-walled steel column has the advantages of light weight and short construction period, it is also prone to buckle, which is not conducive to structures. Previous studies have shown that the cold-formed thin-walled steel channel columns with complex edge stiffeners (also called G-section columns) have higher load-bearing capacities and critical distortional buckling stress. In this paper, the axial behavior of pin-ended G-section columns was studied by means of experiments and finite element analysis.
    In order to study the influence of cross-sectional dimensions and column lengths on the failure modes and load-bearing capacities of G-section columns, a total of 18 cold-formed thin-walled steel G-section columns with nominal thickness of 2.0 mm were tested, and their failure modes, load-displacement curves, load-strain curves and ultimate capacities were analyzed. There were three kinds of cross-sectional dimensions (nominal web depth was 150 mm, 200 mm and 300 mm, respectively), and the slenderness ratios of specimens varied from 15 to 70. Before the tests, the actual dimensions of cross-section, material properties and initial geometric imperfections of the specimens were measured. In the test, it was observed that the specimens with nominal web depth of 150 mm failed in distortional buckling; for the specimens with nominal web depths of 200 mm and 300 mm, when the length of the specimen was less than or equal to 1000 mm, local buckling failure occurred, and the rest specimens failed in local-global interactive buckling, and the half-wave length of local buckling was approximately equal to the web depth.
    Then, the finite element models were established in ABAQUS to simulate the specimens, and the models were validated based on the test results. The calibrated finite element model was subsequently adopted to investigate the influence of the flange width-to-thickness ratio, the web depth-to-thickness ratio and the dimension of complex edge stiffener on the ultimate capacities of the cold-formed thin-walled steel G-section columns. The results showed that the ultimate capacity of the G-section column increased with the increase of flange width-to-thickness ratio and the dimension of complex edge stiffener, and decreased with the increase of web depth-to-thickness ratio.
  • Schafer B W, Peköz T, Sarawit A. Complex edge stiffeners for thin-walled members[J]. Journal of Structural Engineering, 2006, 132(2):212-226.
    Yan J, Young B. Column tests of cold-formed steel channels with complex stiffeners[J]. Journal of Structural Engineering, 2002,128(6):737-745.
    Young B, Yan J. Design of cold-formed steel channel columns with complex edge stiffeners by direct strength method[J]. Journal of Structural Engineering, 2004, 130(11):1756-1763.
    Joint Technical Committee BD-082. Cold-formed steel structures:AS/NZS 4600[S]. Sydney,Australia:Standards Australia, 2005.
    王春刚, 张耀春. 卷边槽钢偏心受压构件极限承载力的直接强度计算方法研究[J]. 工程力学, 2009, 26(2):97-102.
    王春刚, 张壮南, 张耀春. 中间加劲复杂卷边槽钢轴心受压构件承载力试验研究[J]. 工程力学, 2013, 30(1):221-228.
    Wang C G, Zhang Z N, Zhao D Q, et al. Compression tests and numerical analysis of web-stiffened channels with complex edge stiffeners[J]. Journal of Constructional Steel Research, 2016, 116:29-39.
    Manikandan P, Aruna G, Balaji S, et al. Evaluation on effectiveness of cold-formed steel column with various types of edge stiffener[J]. Arabian Journal for Science & Engineering, 2017, 42(9):4157-4168.
    尹凌峰, 葛艳丽, 唐敢,等. 基于直接强度法的冷弯薄壁开口多次卷边槽钢立柱截面形式研究[J]. 应用力学学报, 2016,33(1):136-142.
    中华人民共和国建设部. 冷弯薄壁型钢结构技术规范:GB 50018-2002[S]. 北京:中国建筑工业出版社, 2003.
    American Iron and Steel Institute. North American specification for the design of cold-formed steel structural members:AISI S100[S]. Washington D.C., USA:American Iron and Steel Institute, 2007.
    中华人民共和国国家质量监督检验检疫总局.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S]. 北京:中国标准出版社, 2011.
    邹勃. 冷弯薄壁卷边槽形轴压构件畸变相关屈曲性能研究[D]. 重庆:重庆大学,2018.
    Li Z, Schafer B W. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM:conventional and constrained finite strip methods[C]//Proceedings of the 20th International Specialty Conference on Cold-Formed Steel Structure. Saint Louis, Missouri, USA:2010:17-31.
    王海明.冷弯薄壁型钢受弯构件稳定性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
  • Relative Articles

    [1]Zhenghao Qian, Weiyong Wang. Research on Mechanical Properties of Circular Tubed Steel-Reinforced Concrete Stub Columns with High-Strength Steel Under Axial Compression[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 29-36. doi: 10.13206/j.gjgS24091402
    [2]Sicheng Li, Ran He, Zhangqi Hu, Hao Peng, Shenyun Liu. Experimental Research on Special-Shaped Concrete-Filled Steel Tubular Columns Under Axial Compression[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 21-28. doi: 10.13206/j.gjgS24091301
    [3]Pengfei Men, Ho-Cheung Ho, Kwok-Fai Chung. Experimental Investigation of Axial Compression Behaviour of Stub Circular Concrete-Filled Steel Tubes with Q690 High-Strength Steel[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(5): 41-48. doi: 10.13206/j.gjgS24050106
    [4]Faxing Ding, Luyu She, Linli Duan, Jianxiong Lei. Finite Element Analysis of Seismic Performance of Concrete-Filled Square Steel Tubular Column to Composite Beam Joint with Stiffening Ring Under High Axial Pressure[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(1): 29-40. doi: 10.13206/j.gjgS23072801
    [5]Yan Gao Guochang Li Xiao Li, . Finite Element Analysis of Pure Bending Properties of Square Steel Tube-Wood-Concrete Members[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(7): 38-46. doi: 10.13206/j.gjgS23110202
    [6]Keyang Ning, Meng Xiao, Kwok-Fai Chung. Experimental Study on Overall Buckling Behavior of Q690 High Strength Steel Cold-Formed Square Tube Columns Under Axial Compression[J]. STEEL CONSTRUCTION(Chinese & English), 2024, 39(5): 1-7. doi: 10.3724/j.gjgS24050101
    [7]Rui Sun, Yiyi Chen, Yukun Yang, Xiaomeng Xie, Yuexi He. Experimental Study on Lateral Performance of Partially Encased Composite Shear Walls[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(6): 1-11. doi: 10.13206/j.gjgS22110301
    [8]XING Zunsheng, YE Dongchen, ZHANG Zhihao, JIA Shangrui. Performance Analysis of Complex Cast Steel Joint in the Steel Roof of Hangzhou West Railway Station[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(2): 1-7. doi: 10.13206/j.gjgS22120101
    [9]Jie Zhu, Haochuan Zhu, Zhibin Xiao, Lingpeng Ye, Zhenfen Jin. Research on Axial Compression Stability of Partially Encased Composite Wall[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(6): 12-21. doi: 10.13206/j.gjgS22101102
    [10]Jianghui He, Caiqi Zhao, Gang Wang, Tengteng Zheng. Experimental Study on Shear Performance of New Type of Aluminum Alloy Flower-Gusset Joint[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(4): 29-34. doi: 10.13206/j.gjgS22063003
    [11]ZHONG Chang-jun, SHEN Rui-li, WANG Hui. Finite Element Analysis of Cable Saddle’s Mechanical Performance Considering the Influence of Cast Steel Material Inhomogeneity[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(11): 31-38. doi: 10.13206/j.gjgS20092001
    [12]Zhaobing Ren. Nonlinear Performance Analysis of Steel Reinforced Concrete Beam Column Joints in Yinchuan Green Space Center[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(9): 8-16. doi: 10.13206/j.gjgS22022202
    [13]Teng Wang, Huikang Feng, Wentao Qiao, Jizhi Su, Lihuan Wang. Study on Flexural Capacity of Profiled Steel Sheet-Polyurethane Sandwich Slabs[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(8): 9-16. doi: 10.13206/j.gjgS22031502
    [14]Qiliang Miao, Zhensen Song, Zhongxiang ZHANG. Numerical Study on Cold-formed Steel Built-up Stiffened Cruciform Specimen Subjected to Axial Load[J]. STEEL CONSTRUCTION(Chinese & English), 2022, 37(3): 20-27. doi: 10.13206/j.gjgS21103101
    [15]Yanxia Zhang, Zhaoxin Hou, Ailin Zhang, Mengyao Cheng. Experimental Study of Box-Shaped Steel Column Bolted Connection[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(1): 34-49. doi: 10.13206/j.gjgSE20061102
    [16]Qiang Xu, Haowen Liu, Wentao Qiao, Chao Wang. Finite Element Analysis on Seismic Behavior of A New Prefabricated Corrugated Steel Plate and Polyurethane Composite Shear Wall[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(12): 1-8. doi: 10.13206/j.gjgS21051102
    [17]Ganping Shu, Xiu Xu, Yueyan Gu, Qinglin Jiang, Baofeng Zheng. Study on the Lateral-Torsional Buckling of Duplex Stainless Steel Welded I-Section Flexural Members[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(2): 1-25. doi: 10.13206/j.gjgSE20081701
    [18]Jing Li, Wucai Lu. Finite Element Simulation and Parametric Analysis of Composite Shear Walls with Steel Plates and Infill Concrete Under Axial Compression[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(9): 10-18. doi: 10.13206/j.gjgS20062202
    [19]Zihan Jia, Xiantie Wang, Chuandong Xie, Jiaping Zhang, Yiwei Gu. Finite Element Analysis of Seismic Behavior of Self-Centering Concrete-Filled Square Steel Tubular Column-Steel Beam Joint with Slotted Energy Dissipation Plate[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(12): 1-7. doi: 10.13206/j.gjgS20091601
    [20]Chao Gong, Hao Kang, Zhaoxin Hou, Yuyin Wang, Weiqiao Liang, Guowei Zhang. Theoretical Analysis and Experimental Study on Bending Behavior of Steel-Concrete Composite Flat Beams[J]. STEEL CONSTRUCTION(Chinese & English), 2020, 35(6): 41-49. doi: 10.13206/j.gjgS20051201
  • Cited by

    Periodical cited type(6)

    1. 赵曦,孙晓燕,李占杰,杜鹏飞. 冷弯型钢受压构件几何缺陷研究综述. 建筑钢结构进展. 2023(04): 1-17 .
    2. 牛宏祥,韩爱红,侯亚杰,李艳春,谢艳芬. 不同加劲形式冷弯薄壁C型钢柱数值分析. 低温建筑技术. 2022(09): 85-88+94 .
    3. 韩爱红,侯亚杰,严若飞,汤小松,牛宏祥. 冷弯薄壁型钢的屈曲性能综述. 低温建筑技术. 2021(09): 64-67 .
    4. 曹万林,杨兆源,周绪红,石宇. 装配式轻钢组合结构研究现状与发展. 建筑钢结构进展. 2021(12): 1-15 .
    5. 范健雄,张宇翔. 冷成型钢开口截面轴压构件的数值模拟与承载力研究. 科技通报. 2021(12): 83-87+92 .
    6. 金路,陈强,田大可. 缀板式冷弯薄钢双肢格构柱轴压承载力研究. 工业建筑. 2021(10): 94-100 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.7 %FULLTEXT: 14.7 %META: 79.2 %META: 79.2 %PDF: 6.1 %PDF: 6.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.7 %其他: 8.7 %其他: 0.5 %其他: 0.5 %China: 3.0 %China: 3.0 %Japan: 0.1 %Japan: 0.1 %[]: 0.3 %[]: 0.3 %上海: 4.3 %上海: 4.3 %东莞: 0.3 %东莞: 0.3 %佛山: 0.3 %佛山: 0.3 %兰州: 0.1 %兰州: 0.1 %北京: 14.8 %北京: 14.8 %南京: 0.1 %南京: 0.1 %南通: 0.3 %南通: 0.3 %厦门: 0.1 %厦门: 0.1 %台州: 0.4 %台州: 0.4 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.5 %合肥: 0.5 %呼和浩特: 0.3 %呼和浩特: 0.3 %大同: 0.3 %大同: 0.3 %天津: 1.0 %天津: 1.0 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %安阳: 0.3 %安阳: 0.3 %宿州: 0.1 %宿州: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.3 %常德: 0.3 %广州: 0.4 %广州: 0.4 %廊坊: 0.3 %廊坊: 0.3 %张家口: 2.5 %张家口: 2.5 %成都: 0.9 %成都: 0.9 %扬州: 1.4 %扬州: 1.4 %昆明: 0.7 %昆明: 0.7 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.7 %杭州: 0.7 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.1 %沧州: 0.1 %法兰克福: 0.8 %法兰克福: 0.8 %济南: 0.8 %济南: 0.8 %海口: 0.1 %海口: 0.1 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.4 %深圳: 0.4 %深圳市南山区: 0.4 %深圳市南山区: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.5 %漯河: 0.5 %濮阳: 0.1 %濮阳: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.4 %秦皇岛: 0.4 %绍兴: 0.4 %绍兴: 0.4 %芒廷维尤: 8.2 %芒廷维尤: 8.2 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.8 %苏州: 0.8 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.5 %衢州: 0.5 %西宁: 30.6 %西宁: 30.6 %西安: 1.0 %西安: 1.0 %贵阳: 0.5 %贵阳: 0.5 %运城: 0.8 %运城: 0.8 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.2 %郑州: 1.2 %重庆: 1.4 %重庆: 1.4 %金华: 0.1 %金华: 0.1 %长沙: 1.7 %长沙: 1.7 %长治: 0.1 %长治: 0.1 %阳泉: 0.8 %阳泉: 0.8 %青岛: 0.5 %青岛: 0.5 %高雄: 0.1 %高雄: 0.1 %鹤壁市淇滨区: 0.3 %鹤壁市淇滨区: 0.3 %其他其他ChinaJapan[]上海东莞佛山兰州北京南京南通厦门台州台湾省合肥呼和浩特大同天津娄底宁波安阳宿州常州常德广州廊坊张家口成都扬州昆明晋城朝阳杭州武汉沈阳沧州法兰克福济南海口淮南淮安深圳深圳市南山区温州湖州漯河濮阳玉林石家庄福州秦皇岛绍兴芒廷维尤芜湖芝加哥苏州衡阳衢州西宁西安贵阳运城邯郸郑州重庆金华长沙长治阳泉青岛高雄鹤壁市淇滨区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (606) PDF downloads(52) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return