Air-Inflated Rib Membrane Structure and Its Applications
-
摘要: 气肋式膜结构是一种采用高压气肋作为支承体系的充气膜结构,通过将多根气肋连接成整体的方式创造出使用空间,具有轻质便携、可快速运输、低耗能、安全可靠等优点。为满足跨度大、承载性能强的要求,国内外学者对此进行了充分的研究,气肋式膜结构得到了广泛的应用和发展,成为国内外众多城市的象征性建筑。为此,首先对气肋式膜结构的结构形式进行了综述,概述了气肋内压的作用和设计要求,简述了工程应用中的设计内压,概括了使用性能监测手段和失效性能研究方法。随后对气肋式膜结构工程应用案例进行了归纳,此种结构形式已广泛应用于展览馆、运动场所、实验室、充气机库、存储仓库等实际工程项目中。在大跨度气肋式膜结构建筑中,索笼绑带型气肋式膜结构提供了一种有效的方法来连接多根气肋使其形成整体。绑带式连接可以通过增加绑带布置提高单根气肋的承载能力以及气肋之间的协同工作能力,着重介绍了索笼绑带型气肋式膜结构的结构特点和BUILDAIR公司采用索笼绑带型气肋式膜结构建设的大型飞机机库工程应用。最后对索笼绑带型气肋式膜结构工程应用中的气肋直径与结构跨度的关系进行了统计分析,结果表明,在大部分索笼绑带型气肋式膜结构工程案例中气肋直径与结构跨度的比值约为1/10,但具体气肋直径的选取,还需根据实际的工程条件通过设计分析后确定。Abstract: Air-inflated rib membrane structure is a kind of structure or component using high-pressure air-inflated ribs as support system, which can create space by connecting multiple air-inflated ribs. It has the advantages of lightweight and portable, fast transportation, low energy consumption, safety and reliability. In order to create the structure with large span and strong load-bearing capacity, the scholars at home and abroad have conducted thorough researches on this issue, and the air-inflated rib membrane structures have been widely used and developed, which have become symbolic buildings in many cities at home and abroad. Firstly, the structural form of the air-inflated rib membrane structure, and the function and design requirements of internal pressure were summarized in this paper. The internal pressure in engineering applications was described briefly, the methods of monitoring the performance and the studies of failure performance were outlined. Then, a summary of examples of the air-inflated rib membrane structure used in engineering projects was concluded. This structural form has been widely used in exhibition halls, sports venues, laboratories, aircraft hangars, warehouses and other practical engineering projects. In large-span air-inflated structures, the trip-cage type air-inflated rib membrane structure provides an effective method for connecting multiple air-ribs. The strip connection type can greatly improve the bearing capacity of a single air-inflated rib and the cooperative working ability between air-inflated ribs. The structural characteristics and engineering applications of large aircraft hangars built by BUILDAIR Company using the strip-cage type air-inflated rib membrane structure were emphatically introduced. Finally, the relationship between the diameter of the air-inflated rib and the span of the structure in engineering applications was investigated. The result shows that the ratio between the diameter of the air-inflated rib and the span of the structure is about 1/10 in most of the strip-cage type air-inflated rib membrane structure engineering cases. However, the selection of the diameter needs to be determined by design analysis according to the actual engineering conditions.
-
[1] 陈务军. 膜结构工程设计[M]. 北京:中国建筑工业出版社, 2005. [2] 薛素铎. 充气膜结构设计与施工技术指南[M]. 北京:中国建筑工业出版社, 2019. [3] 孙茹洁, 张天娇. 轻型易变结构:膜结构[J]. 中外建筑, 2013, 143(3):90-92. [4] 蓝天. 当代膜结构发展概述[J]. 世界建筑, 2000(9):17-20. [5] Buildair. Inflatable structures[EB/OL].[2019-04-05] https://buildair. com/inflatable-structure/. [6] 冯远红, 杨风雷, 闫文魁, 等. 拱形气肋承载力分析与试验[J]. 建筑结构, 2009, 39(增刊2):398-400. [7] 杜振勇. 充气梁弯皱特性研究[D]. 哈尔滨:哈尔滨工业大学, 2012. [8] 张立乾, 冯中华, 闫晶, 等. 一种快速架设的充气桥梁结构研究[J]. 建筑结构, 2022, 52(增刊2):1662-1667. [9] 吕强, 叶正寅, 李栋. 充气结构机翼的设计和试验研究[J]. 飞行力学, 2007, 98(4):77-80, 85. [10] 颜卫亨, 胡云龙, 张茂功, 等. 气肋式充气拱结构的应用[C]//天津大学, 上海交通大学. 第十届全国现代结构工程学术研讨会论文集. 上海:2010. [11] 周子龙, 严帅, 陈龙龙, 等. 大跨气肋与拉片式多气室拱形充气膜结构分析研究[C]//天津大学, 天津市钢结构学会. 第二十三届全国现代结构工程学术研讨会论文集. 兰州:2023:21-29. [12] 王宁睿. 气肋式充气膜结构褶皱及损伤失效性能研究[D]. 上海:同济大学, 2023. [13] 川口卫. 構造と感性構造デザインの原理と手法[M]. 東京:鹿島出版会, 2015. [14] Gonzalez J, Marcipar J, Estruch C, et al. Structural analysis and design of a large inflatable hangar for aircrafts[J]. Structural Engineering International, 2022, 33:3473-3477. [15] 叶云凌. 海上浮式充气膜结构承载性能研究[D]. 武汉:武汉理工大学, 2019. [16] Li Q, Guo X, Qing Q, et al. Dynamic deflation assessment of an air inflated membrane structure[J]. Thin-Walled Structures, 2015, 94:446-456. [17] 李庆松. 气肋式膜结构充气展开及泄气倒塌分析[D]. 上海:上海交通大学, 2016. [18] Partners M. Microcity sales office by mossine partners[EB/OL].[2013-10-24]. https://www.designrulz.com/design/2013/10/microc-itysales-office-by-mossine-partners-moscow-rusia/. [19] Holstroy. Пневмокаркасное сооружение, офисный центр[EB/OL].[2014-07-30]. https://www.holstroy.com.ua/pnevmo/pnevmo14.htm. [20] Jungjohann H, Woodington W. Ontario celebration zone pavilion:a large pneumatic structure[J]. Procedia Engineering, 2016, 155:507- 515. [21] 陈博轩. 大跨度冰壳结构设计与监测方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018. [22] 众建筑. 三色顶:众行拱, 蓝天泡, 绿洲廊, 苏州/[EB/OL].[2021- 03-22]. https://www.gooood.cn/tricolor-trilogy-accordion-arcade-bluesky-blues-orbital-oasis-china-by-pao.htm. [23] Ishii K. Membrane structures in Japan[M]. Tokyo:SPS Publishing Company, 1995. [24] Holstroy. Пневмокаркасное сооружение, cпорткомплекс[EB/OL].[2015-07-29]. https://www.holstroy.com.ua/pnevmo/pnevmo16.htm. [25] Holstroy. Зал для минифутбола[EB/OL].[2016-03-27]. https://www.holstroy.com.ua/pnevmo/pnevmo33.htm. [26] Holstroy. Накрытие бассейна[EB/OL].[2017-06-20]. https://www. holstroy.com.ua/pnevmo/pnevmo63.htm. [27] 青岛艾尔兄弟科技有限公司. 气肋式膜建筑-充气体育馆[EB/OL].[2020-12-17]. http://www.sdairbrother.cn/tiyuguananli/46-123.html. [28] 万宗帅. 新型充气膜混合结构形态分析及受力性能研究[D]. 哈尔滨:哈尔滨工业大学, 2020. [29] Luchsinger R H, Pedretti M, Reinhard A. Pressure induced stability:from pneumatic structures to tensairity[J]. Journal of Bionics Engineering, 2004(3):1-8. [30] Reporter S. Inflated roof structure for heathrow airport central bus station[EB/OL].[2006-01-19]. https://sdblimited.com/Innovation.html. [31] 许若飞, 杜国福. 发展野战充气式卫生帐篷的探讨[J]. 医疗卫生装备, 2013, 34(4):85-87. [32] Buildair. Hangar H20 Santiago[EB/OL].[2019-05-30]. https://buildair. com/hangar-h20-santiago/. [33] Buildair. Hangar H45 Budapest[EB/OL].[2019-05-29]. https://buildair. com/hangar-h45-budapest/. [34] 龚景海, 李中立, 宋小兵. 气承与气肋组合式充气膜结构的研究与应用[J]. 空间结构, 2013, 19(1):72-78. [35] 陈戊荣, 陈兆荣, 苏运升, 等. 充气膜结构病毒检测实验室建造全过程工程实践[C]//2022年全国工程建设行业施工技术交流会论文集(下册). 杭州:2022:820-823. [36] Складское помещение[EB/OL].[2015-08-19]. https://www.holstroy. com.ua/pnevmo/pnevmo24.htm. [37] 青岛艾尔兄弟科技有限公司. 高耸气肋膜重要物项围护结构的 研制[EB/OL].[2022-09-22]. https://mp.weixin.qq.com/s/ta84b57Dcz383HMBajvVwA. [38] Wu A. Inflatable arches chosen to reimagine St. Catherine street construction site[EB/OL].[2016-10-10]. https://www.archdaily.com/796802/in-flatable-arches-chosen-to-reimagine-st-catherine-street-co nstruction-site. [39] Luchsinger R H, Pedretti M, Steingruber P, et al. Light weight structures with tensairity[C]//International Symposium Shell and Spatial Structures from Models to Realization, IASS2004 Symposium. Montpellier:France, 2004. [40] Buildair. Buildair[EB/OL].[2021-05-06]. https://buildair.com/. [41] Buildair. Hangar H54 Getafe[EB/OL].[2019-04-15]. https://buildair.com/hangar-h54-getafe/. [42] Buildair. Hangar H75 Jeddah[EB/OL].[2019-07-16]. https://buildair. com/hangar-h75-jeddah/.
点击查看大图
计量
- 文章访问数: 344
- HTML全文浏览量: 95
- PDF下载量: 18
- 被引次数: 0