Research Progress on Mechanical Properties of Concrete-Filled Steel Tube Members Under Corrosive Environment
-
摘要: 钢管混凝土在运输及施工过程中易出现防锈层脱落,在腐蚀性气体、液体和土壤等环境作用下服役,进一步加剧了钢管壁的腐蚀,引起截面损失和钢材本身性能的劣化。腐蚀后的钢管混凝土表现为整体承载力、塑性变形能力、组合弹性模量和对核心混凝土约束性能的降低,最终导致整体结构失效的风险增大。
通过对钢管混凝土腐蚀后性能研究现状的分析,从微观腐蚀形貌、宏观构件力学性能及相关理论计算方法三个方面对腐蚀后钢管混凝土的静力性能、抗震性能以及有限元分析方法进行了对比总结,并对腐蚀后钢管混凝土力学性能的研究进行了展望。
基于目前研究的分析表明:对于钢管混凝土腐蚀形貌,可以通过三维表面扫描仪来实现其高精度三维重构,通过腐蚀形貌的重构得到蚀坑尺寸、形状和深度等分布对其力学性能的影响;对于腐蚀后钢管混凝土静力性能,主要集中在均匀腐蚀后钢管混凝土的轴压、轴拉及偏压性能,且基于叠加理论计算腐蚀后钢管混凝土轴压承载力相较统一理论具有更高的精度。目前对于局部腐蚀后钢管混凝土的力学性能的研究较少,局部腐蚀虽然产生的失重率很小,但会引起构件应力集中、屈曲提前、承载力降低,严重威胁结构安全,因此有必要增加此方面的研究。对于腐蚀后的钢管混凝土柱的抗震性能研究发现,轴压比一定时,腐蚀率越高,承载力下降越大,屈服后腐蚀试件的耗能能力迅速降低;目前对钢管混凝土的腐蚀试验方面的研究主要通过通电加速腐蚀、盐雾腐蚀和机械开槽模拟等方法,采用盐雾腐蚀能更好地通过试验模拟实际的海水腐蚀,建立试验腐蚀与实际腐蚀环境的关联,可对今后的研究提供更有价值的参考;对腐蚀后钢管混凝土有限元模拟方法的研究中,钢管腐蚀常采用壁厚折减法、材性折减法、生死单元法、双层壳单元法及随机点蚀法等,研究表明蚀坑区产生应力集中,引起破坏模式的变化,强度显著降低。随机点蚀法实现了大量点蚀实例的快速几何建模,点蚀的形式和分布对构件疲劳损伤有显著影响,在研究裂纹扩展等疲劳问题时,不能忽视其随机性。随机腐蚀与实际腐蚀形貌存在一定差异,在后续的研究中考虑模拟随机点蚀法与工程实际的腐蚀形貌建立相关性是腐蚀模拟的关键,建议增加此方面研究,实现腐蚀后钢管混凝土力学性能的精细化有限元模拟。
通过介绍现有的研究现状,探讨并总结腐蚀后的钢管混凝土构件腐蚀形貌、力学性能和有限元模拟方法,为将来的进一步深入研究给出相关建议。Abstract: Concrete filled steel tubes(CFST) are easy to fall off the rust layer in the process of transportation and construction, and they are in service under the action of corrosive gas, liquid and soil, which further aggravates the corrosion of steel tube wall, causing section loss and deterioration of steel performance. After corrosion, the overall bearing capacity, plastic deformation capacity, combined elastic modulus and constraint performance of core concrete are reduced, and the risk of overall structure failure is increased.
To fully understand the development status of CFST after corrosion, the static performance, seismic performance and finite element analysis of corroded CFST were compared and summarized from three aspects:microscopic corrosion morphology, mechanical properties of macroscopic components and related theoretical calculation methods, and the research on the mechanical performance of corroded CFST was prospected.
Based on the analysis of the current research, the conclusions and prospects are as follows:the research on the corrosion morphology of CFST can realize the high-precision three-dimensional reconstruction of the corrosion morphology of concrete-filled steel tube through the three-dimensional surface scanner. The influence of the distribution law of corrosion pit size, shape and depth on its mechanical properties can be obtained through the reconstruction of corrosion morphology. The research on the static performance of CFST after corrosion mainly focuses on the axial compression, axial tension and eccentric compression performance of CFST after uniform corrosion. The study of axial compression bearing capacity of corroded CFST shows that the calculation of bearing capacity based on superposition theory is more accurate than that of unified theory. At present, there are few studies on the mechanical properties of c CFST after local corrosion. Although the weight loss rate caused by local corrosion is very small, it will cause stress concentration, buckling in advance and bearing capacity reduction of components, which seriously threatens the safety of structures. It is therefore necessary to increase research in this area. The study on the seismic performance of corroded CFST columns shows that when the axial compression ratio is constant, the higher the corrosion rate is, the greater the decrease in the bearing capacity is, and the energy dissipation capacity of the corroded specimens after yield decreases rapidly. The research on the corrosion test of CFST mainly adopts the methods of electric accelerated corrosion, salt spray corrosion and mechanical groove simulation. The salt spray corrosion can better simulate the actual seawater corrosion through the test, and establish the correlation between the test corrosion and the actual corrosion environment, which can provide more valuable reference for future research. In the study of the finite element simulation method of CFST after corrosion, the wall thickness reduction method, material reduction method, birth and death element method, double shell element method and random pitting method are often used in steel tube corrosion. The study shows that the stress concentration in the corrosion pit area causes the change of failure mode and the strength decreases significantly. The random pitting method realizes the rapid geometric modeling of a large number of pitting examples. The form and distribution of pitting have a significant influence on the fatigue damage of components, and its randomness cannot be ignored when studying fatigue problems such as crack propagation. There are some differences between the random corrosion and the actual corrosion morphology. In the follow-up study, it is the key to consider the correlation between the simulated random pitting method and the actual corrosion morphology of the project. It is suggested to increase this research to realize the refined finite element simulation of the mechanical properties of CFST after corrosion.
This article will introduce the current research situation, discuss and summarize the corrosion morphology, mechanical properties and finite element simulation methods of corroded CFST members, and give relevant suggestions for further research in the future. -
[1] 钟善桐.钢管混凝土结构[M].北京:清华大学出版社, 2003. [2] 宋方远, 谢旭, 张婷婷.锈蚀表面形貌及其对钢材超低周疲劳性能的影响[J].土木与环境工程学报(中英文), 2021, 43(5):132-141. [3] Paik J K, Lee J M, Ko M J.Ultimate compressive strength of plate elements with pit corrosion wastage[J].Journal of Engineering for the Maritime Environment, 2003, 217 (4).DOI: 10.1177/147509020321700402. [4] Ahmad R R.Ultimate strength of corroded steel plates with irregular surfaces under in-plane compression[J].Ocean Engineering, 2012(54):261-269. [5] Holme B, Lunder O.Characterisation of pitting corrosion by white light interferometry[J].Corrosion Science, 2007(49):391-402. [6] 王燕舞, 黄小平, 崔维成.船舶结构钢海洋环境点蚀模型研究之一:最大点蚀深度时变模型[J].船舶力学, 2007 (4):577-586. [7] 王皓, 徐善华, 苏磊.加速腐蚀环境下钢板表面坑蚀形貌统计规律[J].土木建筑与环境工程, 2016, 38(1):209-220. [8] Wang Y F, Cheng G X.Quantitative evaluation of pit sizes for high strength steel:electrochemical noise, 3-D measurement, and image-recognition-based statistical analysis[J].Materials&Design, 2016, 94:332-345. [9] Silva J E, Garbatov Y, Soares C G.Ultimate strength assessment of rectangular steel plates subjected to a random localised corrosion degradation[J].Engineering Structures, 2013, 52:405-416. [10] Silva J E, Garbatov Y, Soares C G.Reliability assessment of a steel plate subjected to distributed and localized corrosion wastage[J].Engineering Structures, 2014, 59:13-20. [11] PalosÂ, Soares C G.Ultimate strength of plates with random fields of corrosion[J].Structure and Infrastructure Engineering, 2008, 4(5):100-121. [12] 邱斌.中性盐雾环境下锈蚀H型钢表面特征及偏压承载性能研究[D].西安:西安建筑科技大学, 2014. [13] Wang R H, Shenoi A, Sobey A.Ultimate strength assessment of plated steel structures with random pitting corrosion damage[J].Journal of Constructional Steel Research, 2018, 143:321-336. [14] 孔正义.腐蚀钢构件疲劳性能退化试验研究[D].西安:西安建筑科技大学, 2010. [15] 商钰.腐蚀环境对钢结构表面锈蚀特征影响的研究[D].西安:西安建筑科技大学, 2011. [16] Xu S H, Wang Y D, Xue Q F.Evaluation indicators and extraction method for pitting corrosion of structural steel[J].Journal of Harbin Institute of Technology, 2015, 22(3):15-21. [17] 王友德, 周晓东, 马蕊, 等.模拟近海大气环境下结构钢锈蚀表面特征随机模型[J].金属学报, 2021, 57(6):811-821. [18] 王友德, 史涛, 夏敏, 等.基于形貌的结构钢锈蚀评价指标及提取方法[J].材料导报, 2021, 35(16):138-143. [19] Jia C, Shao Y S, Guo L H.Incipient corrosion behavior and mechanical properties of low-alloy steel in simulated industrial atmosphere[J].Construction and Building Materials, 2018, 187.DOI: 10.1016/j.conbuildmat.2018.08.082. [20] 贾晨, 邵永松, 郭兰慧, 等.建筑结构用钢的大气腐蚀模型研究综述[J].哈尔滨工业大学学报, 2020, 52(8):1-9. [21] Jia C, Shao Y S, Guo L H.Mechanical properties of corroded high strength low alloy steel plate[J].Journal of Constructional Steel Research, 2020, 172.DOI: 10.1016/j.jcsr.2020.106160. [22] Jia C, Shao Y S, Guo L H.Cyclic behavior and constitutive model of high strength low alloy steel plate[J].Engineering Structures, 2020, 217.DOI: 10.1016/j.engstruct.2020.110798. [23] 王友德, 徐善华, 李晗, 等.一般大气环境下锈蚀结构钢表面特征与随机模型[J].金属学报, 2020, 56(2):148-160. [24] 叶继红, 申会谦, 薛素铎.点蚀孔腐蚀钢构件力学性能劣化简化分析方法[J].哈尔滨工业大学学报, 2016, 48(12):70-75. [25] 张耀春, 王秋萍, 毛小勇, 等.薄壁钢管混凝土短柱轴压力学性能试验研究[J].建筑结构, 2005, 35(1):22-27. [26] 高山, 彭震, 郭兰慧.盐雾腐蚀下钢管混凝土短柱轴压性能试验研究[J].建筑结构学报, 2019, 40(增刊1):214-219. [27] Zhang F J, Xia J W, Li G, et al.Degradation of axial ultimate load-bearing capacity of circular thin-walled concrete-filled steel tubular stub columns after corrosion[J].Materials, 2020, 13(3):75-86. [28] Gao S, Guo L H, Zhang S M, et al.Performance degradation of circular thin-walled CFST stub columns in high-latitude offshore region[J].Thin-Walled Structures, 2020, 154.DOI: 10.1016/j.tws.2020.106906. [29] Zhang T, Lyu X T, Liu H Q, et al.Axial performance degradation of squared CFST stubs in severe cold and acid rain area[J].Construction and Building Materials, 2020, 262:176-188. [30] Han L H, He S H, Liao F Y.Performance and calculations of concrete filled steel tubes (CFST) under axial tension[J].Journal of Constructional Steel Research, 2011, 67(11):349-362. [31] Hou C, Han L H, Zhao X L.Full-range analysis on square CFSTstub columns and beams under loading and chloride corrosion[J].Thin-Walled Structures, 2013, 68.DOI: 10.1016/j.tws.2013.03.003. [32] 陈梦成, 王超, 黄宏, 等.酸雨环境下方钢管再生混凝土短柱轴压力学性能试验研究[J].建筑结构, 2017, 47(6):35-40. [33] 中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936-2014[S].北京:中国建筑工业出版社, 2014. [34] Wang H J, Zhang Z W, Qian H L.Effect of local corrosion on the axial compression behavior of circular steel tubes[J].Engineering Structures, 2020, 224.DOI: 10.1016/j.engstruct.2020.111205. [35] Yuan W, Wu Z Q, Wang X T.Mechanical behavior of locally corroded circular steel tube under compression[J].Structures, 2021, 22(2):776-791. [36] Wang H J, Zhang Z W, Hong L.Galvanic corrosion induced localized defects and resulting strength reduction of circular steel tubes under axial compression:an experimental study[J].Thin-Walled Structures, 2020, 154:664-677. [37] 陈梦成, 陈娜茹.局部腐蚀对圆钢管混凝土柱轴向承载力的影响分析[J].华东交通大学学报, 2019, 36(3):80-90. [38] Guo L H, Huang H J, Jia C, et al.Axial behavior of square CFSTwith local corrosion simulated by artificial notch[J].Journal of Constructional Steel Research, 2021, 174:158-169. [39] 王庆利, 冯立明, 屈绍娥.圆钢管混凝土轴压短柱在长期荷载-氯盐腐蚀耦合作用下的试验研究[J].土木工程学报, 2015, 48(增刊1):48-52. [40] 黄海家, 徐炎, 郭兰慧, 等.CFRP布加固局部腐蚀圆钢管混凝土轴压短柱受力性能[J].建筑结构学报, 2020, 41(增刊1):109-116. [41] 王东锋, 邵永波, 欧佳灵.CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究[J].工程力学, 2021 (10):188-199. [42] Wang Y H, Wang Y Y, Hou C, et al.Combined compressionbending-torsion behaviour of CFST columns confined by CFRP for marine structures[J].Composite Structures, 2020, 242:304-318. [43] Dong H H, Zhou Y J, Zhuang N, et al.Study on corrosion characteristics of concrete-filled CFRP-steel tube piles under hygrothermal environment[J].Advances in Materials Science and Engineering, 2020, 174:158-169. [44] Zhou M, Fan J S, Tao M X, et al.Experimental study on the tensile behavior of square concrete-filled steel tubes[J].Journal of Constructional Steel Research, 2016, 121:312-325. [45] Ye Y, Yao X H, Guo Z X.Performance of concrete-filled stainless steel tubes subjected to concentric tension:numerical investigation and parametric study[J].Structures, 2021, 32:406-415. [46] Han L H, He S H, Liao F Y.Performance and calculations of concrete filled steel tubes (CFST) under axial tension[J].Journal of Constructional Steel Research, 2011, 67(11):1699-1709. [47] 花幼星, 侯超, 韩林海.氯离子腐蚀环境下钢管混凝土轴拉构件受力性能研究[J].工程力学, 2015, 32(增刊1):149-152. [48] Hua Y X, Han L H, Hou C.Behaviour of square CFST beam-columns under combined sustained load and corrosion:FEAmodelling and analysis[J].Journal of Constructional Steel Research, 2019, 157:169-178. [49] Hou C C, Han L H, Wang Q L, et al.Flexural behavior of circular concrete filled steel tubes (CFST) under sustained load and chloride corrosion[J].Thin-Walled Structures, 2016, 107:606-602. [50] 陈梦成, 方苇, 黄宏.模拟酸雨腐蚀钢管混凝土构件静力性能研究[J].工程力学, 2020, 37(2):34-43. [51] 黄宏, 周璐, 陈梦成, 等.酸雨腐蚀后圆钢管再生混凝土柱偏压试验研究[J].实验力学, 2018, 33(2):290-298. [52] 黄宏, 孙微, 陈梦成, 等.酸雨环境下方钢管再生混凝土纯弯力学性能试验研究[J].建筑结构, 2018, 32(2):66-71. [53] 黄宏, 朱琪, 陈梦成.酸雨环境下方钢管再生混凝土偏心受压承载力计算方法研究[J].混凝土, 2016(11):60-63. [54] 黄宏, 周璐, 陈梦成.酸雨腐蚀圆钢管再生混凝土柱偏压承载力计算[J].混凝土, 2018(9):14-17. [55] 陈梦成, 林博洋, 黄宏.酸雨腐蚀后圆钢管混凝土柱抗震性能研究[J].铁道科学与工程学报, 2017, 14(1):142-148. [56] Yuan F, Chen M C, Huang H, et al.Circular concrete filled steel tubular (CFST) columns under cyclic load and acid rain attack:test simulation[J].Thin-Walled Structures, 2018, 122:322-335. [57] 宋钢.考虑腐蚀效应的圆钢管轴向受力性能研究[D].哈尔滨:哈尔滨工业大学, 2016. [58] 陈梦成, 林博洋, 黄宏.锈蚀方钢管混凝土短柱轴压承力研究[J].钢结构, 2017, 32(5):110-116. [59] Yuan Y, Zhang N, Liu H Q.Influence of random pit corrosion on axial stiffness of thin-walled circular tubes[J].Structures, 2020, 28:596-604. [60] 赵中伟, 张宏伟, 吴刚.随机点锈蚀下圆形钢管轴压承载能力[J].同济大学学报(自然科学版), 2021, 49(2):188-194. [61] Zhao Z W, Liang B.Liu H Q.Infuence of pitting corrosion on the bending capacity of thin walled circular tubes[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40:548-557. [62] Hu Z Y, Hua L, Liu J X.Numerical simulation and experimental verification of random pitting corrosion characteristics[J].Ocean Engineering, 2021, 240:304-316. [63] 何剑侠.腐蚀环境对钢结构表面锈蚀特征影响的研究[D].南京:东南大学, 2018.
点击查看大图
计量
- 文章访问数: 386
- HTML全文浏览量: 74
- PDF下载量: 12
- 被引次数: 0