Experimental Research on Thread-Fixed One-Side Bolted Connection Between T-stub and Steel Tube Subjected to Tension
-
摘要: 钢结构框架柱采用闭口截面具有截面承载效率高、抗扭模量大等优势。利用螺纹锚固单边螺栓可以解决钢梁-钢管柱无法采用普通高强螺栓直接连接的问题。螺纹锚固单边螺栓是通过在柱壁上加工带有螺纹的螺栓孔,直接将高强螺栓拧紧在柱壁的螺纹孔上来代替传统螺母,实现在钢管柱外侧安装和拧紧。在螺纹锚固单边螺栓双T形节点模型研究的基础上,进一步研究了螺纹锚固单边螺栓连接T形件-钢管的受力机理和破坏模式。对10个采用螺纹锚固单边螺栓连接T形件-钢管节点进行了受拉试验研究,分析和对比了不同节点破坏模式、承载力机理、位移-荷载曲线、屈服承载力和极限承载力等。
试验发现:节点共发生了四种破坏,分别为螺纹剪切破坏、管壁局部屈服伴随螺纹剪切破坏、螺栓杆拉断破坏和管壁屈服破坏。当钢管壁厚度较小时,节点发生螺栓孔内螺纹剪切破坏,当管壁较厚,螺栓直径相对较小时,发生螺栓杆拉断破坏,但螺纹孔内螺纹保持完好,表明当螺栓孔内螺纹长度足够时,钢管壁螺栓孔内螺纹具有足够的承载力,螺纹锚固方式可行。
同时对比分析了螺栓间距、螺栓直径及管壁厚度对节点承载力的影响。试验结果表明:增大螺栓直径、管壁厚度、螺栓间距等,均可以提高节点的承载力;螺栓间距对节点承载力的影响与钢管壁在螺栓拉力作用下屈服线的形状有关,当螺栓间距较小时,各受拉螺栓对钢管壁的屈服线相互叠加,随着螺栓间距增大,节点承载力明显提高;但当螺栓间距较大,各受拉螺栓对钢管壁屈服线为长圆形,随螺栓间距的增加,节点承载力将保持不变;随着螺栓直径的增加,节点的破坏模式逐渐从螺杆拉断破坏改变为钢管壁螺栓孔螺纹破坏或钢管壁屈服破坏,节点承载能力增加;管壁厚度增加显著提高钢管壁屈服承载力,其增长率与壁厚的增长率近似呈平方的关系。
为了避免钢管壁较薄时,管壁螺栓孔内螺纹锚固力不足的问题,进一步研究了钢管内设垫板对螺纹锚固单边螺栓T形件-钢管连接节点受力性能的影响。试验结果表明:垫板增加了螺纹锚固长度,加强后的节点承载力显著提高,有效地避免螺纹剪切破坏,但初始刚度变化不大。Abstract: The closed section of steel frame column has the advantages of high bearing efficiency and large torsional modulus. The problem that steel beam and Hollow Square Column(HSC) cannot be directly connected by ordinary high-strength bolts can be solved by using thread-fixed one-side bolt(TOB). TOB is to directly tighten the high-strength bolt on the threaded hole of the column wall by machining the threaded bolt hole on the column wall, instead of the traditional nut, so as to realize the installation and tightening on the outside of the steel tube column. Based on the study of the thread-fixed one-side bolted double T-joint model, the stress mechanism and failure mode of thread-fixed one-side bolted T-stub with steel tube are further studied. The tensile tests of 10 thread-fixed one-side bolted T-stub with steel tube joints were carried out. The failure modes, bearing capacity mechanisms, displacement-load curves, yield capacity and ultimate bearing capacity of different joints were analyzed and compared.
It is found that there are four kinds of failure modes, which are thread shear failure, tube wall local yield with thread shear failure, bolt rod tensile failure and tube wall yield failure. When the thickness of the steel tube wall is small, the thread shear failure in the bolt hole occurs. When the tube wall is thick and the bolt diameter is relatively small, the bolt rod is broken and the internal thread of the threaded hole remains intact, indicating that when the internal thread length of the bolt hole is sufficient, the internal thread of the bolt hole of the steel tube wall has sufficient bearing capacity and the thread anchoring method is feasible.
At the same time, the effects of bolt spacing, bolt diameter and tube wall thickness on the bearing capacity of the joint are compared and analyzed. The test results show that the bearing capacity of the joint can be improved by increasing the bolt diameter, tube wall thickness and bolt spacing. The influence of bolt spacing on the bearing capacity of the joint is related to the shape of the yield line of the steel tube wall under the bolt tension. When the bolt spacing is small, the yield lines of tensile bolts on the steel tube wall are superimposed. With the increase of bolt spacing, the bearing capacity of the joint is significantly improved. However, when the bolt spacing is large, the yield line of each tensile bolt to the steel tube wall is oblong. With the increase of bolt spacing, the bearing capacity of the joint will remain unchanged. With the increase of the bolt diameter, the failure mode of the joint gradually changes from the bolt rod tensile failure to the thread shear failure or tube wall yield failure, and the bearing capacity of the joint increases. The increase of tube wall thickness significantly increases the yield capacity of steel tube wall, and the growth rate is approximately square with the growth rate of wall thickness.
In order to avoid the problem of insufficient anchoring force in the bolt hole of the steel tube wall when the steel tube wall is thin, the influence of the steel tube with a backing plate on the mechanical performance of the thread-fixed one-side bolted T-stub with steel tube joint is further studied. The test results show that the anchor length of the thread is increased, the bearing capacity of the strengthened joint is significantly improved, and the shear failure of the thread is effectively avoided, but the initial stiffness changes little.-
Key words:
- thread-fixed one-side bolt /
- bolted connection /
- failure mode /
- tensile yield strength
-
[1] 徐婷, 王伟, 陈以一.国外单边螺栓研究现状[J].钢结构, 2015, 30(8):27-33. [2] 王静峰, 曹墨研, 王成刚, 等.圆钢管混凝土柱高强单边螺栓T形件初始刚度计算方法[J].建筑钢结构进展, 2020, 22(2):69-75. [3] 黄春晓, 王静峰, 丁伟伟, 等.钢管混凝土柱T形件连接的抗拉承载力研究[J].建筑钢结构进展, 2015, 17(6):61-67. [4] 王静峰, 端梦珺, 郭磊, 等.方套方中空夹层钢管混凝土柱与钢-混凝土梁单边螺栓端板连接节点数值分析[J].建筑钢结构进展, 2020, 22(6):46-55, 68. [5] 王静峰, 张猛, 张娜.圆中空夹层钢管混凝土柱单边螺栓端板连接节点试验及数值模拟[J].建筑钢结构进展, 2018, 20(2):36-43. [6] 王志宇, 王清远, 薛辉, 等.螺栓端板连接方钢管柱低周疲劳性能及损伤模型研究[J].建筑结构学报, 2016, 37(6):151-159, 173. [7] 王志宇, 王清远, 刘晓凯, 等.基于屈服线理论的螺栓端板连接方钢管柱承载力计算模型研究[J].建筑结构学报, 2016, 37(6):160-173. [8] 中华人民共和国国家质量监督检验检疫总局.钢网架螺栓球节点用高强度螺栓:GB/T 16939-2016[S].北京:中国标准出版社, 2016. [9] France J E, Davison J B, Kirby P A.Moment-capacity and rotational stiffness of endplate connections to concrete-filled tubular columns with flowdrilled connectors[J].Journal of Constructional Steel Research, 1999, 50:35-48. [10] France J E, Davison J B, Kirby P A.Strength and rotational stiffness of simple connections to tubular columns using flowdrill connectors[J].Journal of Constructional Steel Research, 1999, 50:15-34. [11] France J E, Davison J B, Kirby P A.Strength and rotational response of moment connections to tubular columns using flowdrill connectors[J].Journal of Constructional Steel Research, 1999, 50:1-14. [12] Park A Y, Wang Y C.Joint rotation behaviour of bolted endplate connections to flowdrilled RHS columns[C]//13th International Symposium on Tubular Structures.Hong Kong:Elsevier Press, 2010:37-44. [13] Sobotova L, Kralikova R, Badida M.The analysis of chosen material properties at thermal drilling[J].Key Engineering Materials, 2015, 635:35-40. [14] Mascenik J, Pavlenko S.Effective use of technology flowdrill in production engineering[J].Advanced Materials Research, 2015, 1064:171-174. [15] European Committer for Standardization.Eurocode 3:design of steel structures-Part 1-8:design of joints:EN 1993-1-8:2005[S].Brussels:CEN, 2005. [16] Liu M, Zhu X, Wang P, et al.Tension strength and design method for thread-fixed one-side bolted T-stub[J].Engineering Structures, 2017, 150:918-933. [17] Zhu X, Wang P, Liu M, et al.Behaviors of one-side bolted T-stub through thread holes under tension strengthened with backing plate[J].Journal of Constructional Steel Research, 2017, 134:53-65. [18] Wulan T, Wang P, Li Y, et al.Numerical investigation on strength and failure modes of thread-fixed one-side bolted T-stubs under tension[J].Engineering Structures, 2018, 169:15-36. [19] 王培军, 乌兰托亚, 朱绪林.单边螺栓T形节点火灾高温下抗拉性能[J].防灾减灾工程学报, 2018, 38(3):425-431. [20] 张曼, 韩振林, 孙健, 等.高温下自攻螺钉搭接连接薄钢板抗剪性能研究[J].建筑钢结构进展, 2020, 22(5):108-117. [21] 中华人民共和国国家质量监督检验检疫总局.普通螺纹基本牙型:GB/T 192-2003[S].北京:中国标准出版社, 2003. [22] 中华人民共和国国家质量监督检验检疫总局.普通螺纹基本尺寸:GB/T 196-2003[S].北京:中国标准出版社, 2003. [23] 国家市场监督管理总局.钢及钢产品力学性能试验取样位置及试样制备:GB/T 2975-2018[S].北京:中国标准出版社, 2018. [24] 中华人民共和国国家质量监督检验检疫总局.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S].北京:中国标准出版社, 2010. [25] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社, 2018. [26] British Standards Institution.Eurocode 3:design of steel structures-Part 1-5:plated structural elements:BS EN 1993-1-5:2006[S].London:BSI, 2006. [27] 李国强, 段炼, 陆烨, 等.H型钢梁与矩形钢管柱外伸式端板单向螺栓连接节点承载力试验与理论研究[J].建筑结构学报, 2015, 36(9):91-100. [28] The Steel Construction Institute.Joints in steel construction moment-resisting joints to eurocode 3:PUB 398[S].London:The British Constructional Steelwork Association Limited, 2013.
点击查看大图
计量
- 文章访问数: 394
- HTML全文浏览量: 86
- PDF下载量: 23
- 被引次数: 0