Study on Effect of UIT on Welded Residual Stress of Innovative Doubly-Welded Rib-to-Deck Joint in Orthotropic Steel Decks
-
摘要: 新型U肋与顶板双面焊接构造相比传统单面焊构造焊接工序更多、焊接残余应力场更为复杂,发展适用于该新型构造焊接残余应力场调控的焊后处理措施对其进一步推广和应用具有重要意义。为探究超声冲击处理技术对该新型构造焊接残余应力场的调控效应,利用热-应力顺序分析方法对该新型构造的焊接过程进行模拟,以获得其焊接温度场和焊接残余应力场分布。在此基础上,利用应力、应变初始化技术将焊接残余应力场导入超声冲击模型,使之成为超声冲击模型的初始分析状态。最后,基于动力显式分析方法对超声冲击过程进行模拟,模型中采用质量比例阻尼技术来降低动力显式分析过程中的数值震荡。
为说明该多步骤顺序分析有限元模型的合理性,分别从多个方面对模型进行验证:将计算熔化区形状与焊缝形貌进行对比来验证计算温度场的正确性;将计算纵、横向焊接残余应力分布与测试数据对比来验证计算焊接残余应力场的正确性;将计算冲击坑形状与实际形状对比、冲击后残余应力与测试数据对比来说明超声冲击过程模拟的正确性。在有限元模型正确性得到充分验证的基础上,开展超声冲击处理对新型U肋与顶板双面焊构造焊接残余应力场的调控效应研究,并对不同冲击次数和不同冲击速度下焊缝区域残余应力场的变化进行分析。
研究结果表明:该多步骤顺序分析有限元模型能够准确模拟超声冲击处理对新型U肋与顶板双面焊接构造焊接残余应力场的调控效应;经超声冲击处理,新型U肋与顶板双面焊接构造焊趾区域残余应力状态由拉转为压,应力降低幅度最大值为427.2 MPa;自顶板下表面至一定深度范围内均存在残余压应力,且最大压应力值出现在顶板亚表面;随超声冲击针冲击次数增加,新型U肋与顶板双面焊构造顶板下表面残余压应力量值、冲击影响深度均逐渐增大;随超声冲击针冲击速度增大,所引入的残余压应力最大值的分布深度逐渐增大,当冲击速度增大至7 m/s时,残余压应力最大值的分布深度已达0.8 mm。-
关键词:
- 桥梁工程 /
- 正交异性钢桥面板 /
- 新型U肋与顶板双面焊构造 /
- 超声冲击处理 /
- 有限元分析
Abstract: Compared with traditional singly-welded rib-to-deck joint(SRJ), there exists a greater number of welds and more complicated welded residual stress(WRS) distribution in innovative doubly-welded rib-to-deck joint(DRJ), and it is of great significance in further promotion and application of DRJ to develop applicable post-treatment measures for adjusting WRS in DRJ. In order to study the effect of ultrasonic impact treatment(UIT) on WRS of DRJ, the welding process of DRJ was simulated by thermal-stress sequence analysis to obtain the distribution of temperature fields and stress fields; then the obtained WRS was imported into the finite element model of UIT as its initial analysis state by stress-strain initialization techniques; finally, the UIT process was simulated based on the dynamic explicit analysis, and the numerical oscillations of the dynamic explicit analysis were reduced by mass proportional damping technique.
To demonstrate the reasonability of the multi-step sequential analysis finite element model, it was validated from the following aspects:the analyzed melting zone shape was compared with the real weld morphology to validate the correctness of the analyzed temperature fields; the analyzed longitudinal and transverse WRS was compared with the test data to validate the correctness of the analyzed stress fields; the analyzed impact pit and impact residual stress were respectively compared with the real impact pit and the test data to validate the correctness of UIT simulation. On basis of fully validating the correctness of the finite element model, study on the effect of UIT on WRS in DRJ was executed and the residual stress around the weld was analyzed under different impact times and velocities.
The study showed that:the multi-step sequential analysis finite element model could accurately simulate the effect of UIT on WRS in DRJ; the residual tensile stress around the weld toe of DRJ was transformed into residual compressive stress due to UIT, and the decreased stress amplitude was 427.2 MPa; the residual compressive stress existed from the bottom surface of the deck to a certain depth, and the maximum of the residual compressive stress appeared on the subsurface of the deck; the residual compressive stress amplitude and impact affected depth around the weld toe of DRJ gradually increased as the impact times of ultrasonic impact pin increased; when the impact velocity of ultrasonic impact pin increased, the depth of the peak value of residual compressive stress increased gradually, and the depth was up to 0.8 mm when the impact velocity was 7 m/s. -
[1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报, 2014, 27(5):1-96. [2] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3):14-30. [3] Wolchuk R. Lessons from weld cracks in orthotropic decks on three European bridges[J]. Journal of Structural Engineering, 1990, 116(1):75-84. [4] 张清华, 崔闯, 卜一之, 等. 港珠澳大桥正交异性钢桥面板疲劳特性研究[J]. 土木工程学报, 2014, 47(9):110-119. [5] 孟凡超, 张清华, 苏权科, 等. 正交异性钢桥面板抗疲劳关键技术[M]. 北京:人民交通出版社, 2014. [6] 张清华, 崔闯, 卜一之, 等. 正交异性钢桥面板足尺节段疲劳模型试验研究[J]. 土木工程学报, 2015, 48(4):72-83. [7] 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2):69-76. [8] Liu R, Liu Y, Ji B, et al. Hot spot stress analysis on rib-deck welded joint in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2014, 97:1-9. [9] Sim H B, Uang C M. Stress analysis and parametric study on fullscale fatigue tests of rib-to-deck weld joints in steel orthotropic decks[J]. Journal of Bridge Engineering, 2012, 17(5):765-773. [10] 坂野昌弘, 西田尚人, 田畑晶子, 等. 内面溶接によ る Uリ ブ 鋼床版の疲労耐久性向上効果[J]. 鋼構造論文集, 2014, 21:65-81. [11] 罗鹏军, 张清华, 龚代勋, 等. 钢桥面板U肋与顶板双面焊连接疲劳性能研究[J]. 桥梁建设, 2018, 48(2):19-24. [12] 由瑞凯, 刘鹏, 张大庆, 等. 正交异性钢桥面U肋与面板内焊连接疲劳性能试验[J]. 中外公路, 2018, 38(3):174-179. [13] 张华, 孙雅洲, 舒先庆, 等. 正交异性钢桥面板U肋内焊技术[J]. 公路, 2018, 63(9):115-120. [14] Cui C, Zhang Q, Bao Y, et al. Residual stress relaxation at innovative both-side welded rib-to-deck joints under cyclic loading[J]. Journal of Constructional Steel Research, 2019, 156:9-17. [15] 崔闯, 卜一之, 李俊, 等. 钢箱梁面板与U肋焊接残余应力的分布特性[J]. 西南交通大学学报, 2018, 53(2):260-265. [16] Malaki M, Ding H. A Review of ultrasonic peening treatment[J]. Materials & Design, 2015, 87:1072-1086. [17] Statnikov E S, Oleg V K, Vladimir N V. Physics and mechanism of ultrasonic impact ultrasonics[J]. Ltrasonics, 2006, 44(4):533-538. [18] Abdullah A, Malaki M, Eskandari A. Strength enhancement of the welded structures by ultrasonic peening[J]. Materials & Design, 2012, 38:7-18. [19] Feng Y, Hu S, Wang D, et al. Influence of surface topography and needle size on surface quality of steel plates treated by ultrasonic peening[J]. Vacuum, 2016, 132:22-30. [20] 饶德林, 陈立功, 倪纯珍, 等. 超声冲击对焊接结构残余应力的影响[J]. 焊接学报, 2005, 26(4):48-50,64,85. [21] Barsoum Z, Lundbäck A. Simplified FE welding simulation of fillet welds-3D effects on the formation residual stress[J]. Engineering Failure Analysis, 2009, 16:2281-2289. [22] Teng T, Lin C. Effect of welding conditions on residual stresses due to butt welds[J]. International Journal of Pressure Vessels and Piping, 1998, 75(12):857-864. [23] 张彦华. 焊接力学与结构完整性原理[M]. 北京:北京航空航天大学出版社, 2007. [24] 屈立军, 李焕群, 王跃琴, 等. 国产钢结构用Q345(16Mn)钢高温力学性能的恒温加载试验研究[J]. 土木工程学报, 2008, 41(7):33-40. [25] Deng D. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects[J]. Materials and Design, 2009, 30(2):359-366. [26] Deng D, Murakawa H. Prediction of welding distortion and residual stress in a thin plate butt-welded joint[J]. Computational Materials Science, 2008, 43(2):353-365. [27] CEN. Eurocode 3:design of steel structures part 2:steel bridges:BS EN1993-2[S]. Brussels:Standardisation, 2006. [28] 刘紫阳. 基于APDL语言T型接头双侧同步焊有限元建模及在钢结构变形预测中应用研究[D]. 重庆:重庆交通大学, 2015. [29] 桑毅彩. 镦边U肋加劲钢桥面板焊接残余应用研究[D]. 成都:西南交通大学, 2017. [30] Yuan K L, Sumi Y. Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT)[J]. International Journal of Fatigue, 2016, 92:321-332. [31] Sarkani S, Tritchkov V, Michaelov G. An efficient approach for computing residual stresses in welded joints[J]. Finite Elements in Analysis and Design, 2000, 35(3):247-268. [32] Suzuki T, Okawa T, Shimanuki H, et al. Effect of ultrasonic impact treatment (UIT) on fatigue strength of welded joints[J]. Advanced Materials Research, 2014, 996:736-742.
点击查看大图
计量
- 文章访问数: 313
- HTML全文浏览量: 109
- PDF下载量: 8
- 被引次数: 0