留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伸臂桁架体系和梯式连梁体系的高层建筑抗震性能评估

Yahia Halabi Wael Alhaddad 许浒 余志祥

Yahia Halabi, Wael Alhaddad, 许浒, 余志祥. 伸臂桁架体系和梯式连梁体系的高层建筑抗震性能评估[J]. 钢结构(中英文), 2021, 36(8): 1-19. doi: 10.13206/j.gjgSE20111001
引用本文: Yahia Halabi, Wael Alhaddad, 许浒, 余志祥. 伸臂桁架体系和梯式连梁体系的高层建筑抗震性能评估[J]. 钢结构(中英文), 2021, 36(8): 1-19. doi: 10.13206/j.gjgSE20111001
Yahia Halabi, Wael Alhaddad, Hu Xu, Zhixiang Yu. Evaluation of Seismic Performance for Outrigger System and Ladder System in High Rise Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(8): 1-19. doi: 10.13206/j.gjgSE20111001
Citation: Yahia Halabi, Wael Alhaddad, Hu Xu, Zhixiang Yu. Evaluation of Seismic Performance for Outrigger System and Ladder System in High Rise Buildings[J]. STEEL CONSTRUCTION(Chinese & English), 2021, 36(8): 1-19. doi: 10.13206/j.gjgSE20111001

伸臂桁架体系和梯式连梁体系的高层建筑抗震性能评估

doi: 10.13206/j.gjgSE20111001
基金项目: 

The work in this study was supported by the National Key Research and Development Program of China under Grant No. 2016YFC0802205, the Department of Science and Technology of Sichuan Province under Grant No. 2019YJ0221.

详细信息
    作者简介:

    Yahia Halabi:Hu Xu,Email:xuhu@swjtu.edu.cn

Evaluation of Seismic Performance for Outrigger System and Ladder System in High Rise Buildings

Funds: 

The work in this study was supported by the National Key Research and Development Program of China under Grant No. 2016YFC0802205, the Department of Science and Technology of Sichuan Province under Grant No. 2019YJ0221.

  • 摘要: 卓越的抗震性能一直是高层建筑结构设计不断追求的目标,而抗侧力体系则是实现该性能目标的关键因素。伸臂桁架体系作为目前最常见的抗侧力结构体系之一,广泛应用于各地标高层建筑中。然而,伸臂桁架体系的力学性能受桁架布设位置、拓扑形式、施工工序等因素影响,同时还存在整体结构竖向刚度不规则问题,因此,其实际抗震性能和优化途径值得关注。梯式连梁体系是一种较为新颖的抗侧力结构体系,每一层均设置水平连梁连接核心筒与巨柱,与伸臂桁架体系在某些楼层处形成集中刚度相比,其抗侧刚度分布更加均匀。
    为了对比上述两种抗侧力结构体系的抗震性能,以一栋80层的建筑模型作为研究对象,利用ETABS有限元程序建立其数值模型,并采用基于性能的抗震设计方法开展计算分析。按沿高度方向共设置4榀伸臂桁架进行设计,综合考虑结构自重、基底弯矩、基底剪力、层间侧移、筒体弯矩等多种因素,明确了伸臂桁架布设位置,分别是17~18层、32~33层、46~47层和62~63层。此外,建立了4种用钢量相同但几何拓扑形式不同的伸臂桁架模型,通过对比整体结构的自振周期以及在多遇地震和设防烈度地震作用下的基底剪力、弯矩和层间位移等地震响应,选取了最优的拓扑形式。在此基础上,利用等效刚度原则建立了梯式连梁体系数值模型,明确了连梁的截面形式和设计参数,确保其与伸臂桁架体系模型具有相同的整体抗侧刚度。
    采用FEMA 365指南中的构件性能曲线特征值以及性能水准判别准则,选取7组天然地震动和2组人工地震动记录作为输入参数,考虑三向地震作用,分别对伸臂桁架体系模型、梯式连梁体系模型和纯筒体体系模型开展了不同地震烈度下的非线性动力时程分析。计算结果显示:1)在位移响应方面,与纯筒体体系相比,伸臂桁架体系和梯式桁架体系在多遇地震作用下的最大层间位移分别减小了60%和47%,此时两种体系的修正系数R均为1,表明结构处于弹性阶段时伸臂桁架体系更加有效;在设防烈度地震作用下的最大层间位移分别减小了55%和69%,而在罕遇地震作用下则分别减小了56%和70%,此时两种体系的修正系数R分别为3和6,表明梯式连梁体系在结构处于弹塑性阶段时具有更好的延性和地震耗能特性,同时二者的顶点位移响应亦反映出同样的结构变形性能规律。2)在结构内力响应方面,伸臂桁架体系在多遇地震作用下能更加地有效降低核心筒的弯矩,而在设防烈度地震和罕遇地震作用下,梯式连梁体系对核心筒弯矩的降低作用则更为显著,表明在高烈度地震作用下梯式连梁体系能够更为有效地实现整体结构共同受力。3)在结构损伤状态方面,伸臂桁架体系和梯式连梁体系在多遇地震作用下各构件均处于立即使用(IO)性能水准,整体结构处于弹性状态;而在罕遇地震作用下,伸臂桁架体系中部分连梁构件达到生命安全(LS)和防止倒塌(CP)性能水准,相比而言,梯式连梁体系中达到防止倒塌(CP)性能水准的连梁数量显著增加,同时,两种体系中剪力墙构件的损伤状态均以防止倒塌(CP)性能水准为主,且梯式连梁体系中随高度增加,损伤程度稍加严重,但整体塑性损伤分布模式差别不大。由此可见,刚度等效原则更适用于结构在多遇地震作用下的计算分析,而在高烈度地震作用下该方法会导致耗能计算及损伤分布出现偏差,其适用范围具有一定局限性。
  • [1] Taranath B S. Structural analysis and design of tall buildings:steel and composite construction[M]. New York, USA:CRC Press, 2012.
    [2] Fung F. Design and analysis of tall and complex structures[M]. Oxford, United Kingdom:Elsevier, Butter Worth-Heinemann, 2018.
    [3] Khan F R. Recent structural systems in steel for high-rise buildings[C]//Proceedings of the British Constructional Steelwork Association Conference on Steel in Architecture. London, UK:1969:24-26.
    [4] Ali M M, Moon K S. Advances in structural systems for tall buildings:emerging developments for contemporary urban giants[J]. Buildings,2018,8(8):104-138.
    [5] Alhaddad W, Halabi Y, Xu H, et al. A comprehensive introduction to outrigger and belt-truss system in skyscrapers[J]. Structures,2020,27:989-998.
    [6] Alhaddad W, Halabi Y, Xu H, et al. Outrigger and belt-truss system design for high-rise buildings:a comprehensive review part II-guideline for optimum topology and size design[J/OL]. Advances in Civil Engineering,2020. http://doi.org/10.1155/2020/2589735.
    [7] Smith B, Coull A. Tall building structures; analysis and design[M]. New York, USA:John Wiley & Sons, Inc.,1991.
    [8] Moudarres F R, Coull A. Free vibrations of outrigger-braced structures[J]. Proceedings of the Institution of Civil Engineers, 1985, 79(1):105-117.
    [9] Lu X, Lu X, Sezen H, et al. Development of a simplified model and seismic energy dissipation in a super-tall building[J]. Engineering Structures,2014,67:109-122.
    [10] Kim H S. Optimum design of outriggers in a tall building by alternating nonlinear programming[J]. Engineering Structures, 2017,150:91-97.
    [11] Chen Y, Zhang Z. Analysis of outrigger numbers and locations in outrigger braced structures using a multiobjective genetic algorithm[J/OL]. The Structural Design of Tall and Special Buildings,2018(1). http://doi.org/10.1002/tal.1408.
    [12] Nie J G, Ding R. Experimental research on seismic performance of K-style steel outrigger truss to concrete core tube wall joints[C/OL]//Structures Congress 2013:Bridging Your Passion with Your Profession. 2013:2802-2813. http://doi.org/10.1061/9780784412848.244.
    [13] Nie J G, Ding R, Fan J S, et al. Seismic performance of joints between steel K-style outrigger trusses and concrete cores in tall buildings[J/OL]. Journal of Structural Engineering, 2014, 140(12). http://doi.org/10.1061/(ASCE)ST.1943-541X.0001028.
    [14] Ho G W M. Outrigger topology and behaviour[J]. Advanced Steel Construction,2016(2):83-93.
    [15] Lee D. Additive 2D and 3D performance ratio analysis for steel outrigger alternative design[J]. Steel and Composite Structures,2016,20(5):1133-1153.
    [16] Poon D C, Hsiao L E, Zhu Y, et al. Performance-based seismic evaluation of ping an international finance center[C]//Structures Congress 2011. Las Vegas, United States:2011:983-993.
    [17] Jiang H J, Lu X L, Liu X J, et al. Performance-based seismic design principles and structural analysis of Shanghai Tower[J]. Advances in Structural Engineering,2014,17(4):513-527.
    [18] Kwok M, Gibbons C, Tsui J, et al. The structural design of the Mega Tower, China World Trade Centre phase 3, Beijing China[C]//Sixth International Conference on Tall Buildings. Hong Kong,China:2005:396-402.
    [19] Besjak C, Biswas P,Ullah S U, et al. Shenzhen Shum-Yip Tower one-gravity and lateral load resisting system optimization[C]//Structures Congress 2014. Boston:Massachusetts, 2014:2524-2536.
    [20] Alhaddad W, Halabi Y, Meree H, et al. Optimum design method for simplified model of outrigger and ladder systems in tall buildings using genetic algorithm[J]. Structures,2020,28:2467-2487.
    [21] American Institute of Steel Construction. TBI, Tall buildings initiative:guidelines for performance-based seismic design of tall buildings[S]. Berkeley, USA:Pacific Earthquake Engineering Center PEER, University of California,2017.
    [22] Willford M R, Smith R J. Performance-based seismic and wind engineering for 60 story twin towers in manila[C]//The 14th World Conference on Earthquake Engineering. Beijing, China:2008.
    [23] Moehle J P. The tall buildings initiative for alternative seismic design[J]. The Structural Design of Tall and Special Buildings,2007,16(5):559-567.
    [24] Park H S, Lee E, Choi S W, et al. Genetic-algorithm-based minimum weight design of an outrigger system for high-rise buildings[J]. Engineering Structures,2016,117:496-505.
    [25] Babaei M. Multi-objective optimal number and location for steel outrigger-belt truss system[J]. Journal of Engineering Science and Technology,2017,12(10):2599-2612.
    [26] Lee S, Tovar A. Outrigger placement in tall buildings using topology optimization[J]. Engineering Structures,2014,74:122-129.
    [27] Er G K,Iu V P. General procedure of formulating the governing equations for analyzing outrigger-braced structures[C/OL]//7th International Conference on Tall Building. Hong Kong, China:2009:589-595. http://doi.org/10.3850/9789628014194_0017.
    [28] Hulea R, Parv B, Nicoreac M, et al. Optimum design of outrigger and belt truss systems using genetic algorithm[J]. Journal of Civil Engineering and Architecture,2014,8(6):709-715.
    [29] Brunesi E, Nascimbene R, Casagrande L. Seismic analysis of high-rise mega-braced frame-core buildings[J]. Engineering Structures,2016,115:1-7.
    [30] Sohail S, Ahmed P M, Abdulla P S. Optimization of multistory building with multi-outrigger system and belts truss[J]. International Journal of Engineering Research & Technology, 2016,5(7):509-517.
    [31] Coull A, Lau W O. Analysis of multioutrigger-braced structures[J]. Journal of Structural Engineering, 1989, 15(7):1811-1815.
    [32] Rutenberg A, Tal D. Lateral load response of belted tall building structures[J]. Engineering Structures,1987,9(1):53-67.
    [33] Kim H S. Optimum design of outriggers in a tall building by alternating nonlinear programming[J]. Engineering Structures, 2017,150:91-97.
    [34] Mander J B, Priestley M J, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988,114(8):1804-1826.
    [35] American Society of Civil Engineers. Prestandard and commentary for the seismic rehabilitation of buildings:FEMA 356[S]. Washington, D C:Federal Emergency Management Agency, 2000.
  • 加载中
计量
  • 文章访问数:  370
  • HTML全文浏览量:  75
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2021-01-31
  • 网络出版日期:  2021-09-16

目录

    /

    返回文章
    返回