OVERVIEW OF RESEARCH PROGRESS FOR SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL STRUCTURES
-
摘要: 随着屈服强度的提高,高强度结构钢材的屈强比增大,断后伸长率减小,由于缺少相应规范条文,其在抗震设防地区的应用受到限制。从材料、构件和结构三个层面出发,总结了近年来国内外学者针对高强度钢材钢结构抗震性能的研究成果。重点包括:材料的静力拉伸力学性能、循环本构和极低周疲劳性能;柱、梁和连接节点的抗震性能;高强钢结构框架的抗震性能等内容。最后,对高强钢钢结构抗震性能的进一步研究工作进行了展望。Abstract: With the increase of yield strength, the yield ratio of high strength structural steel increases, and the elongation after fracture decreases. The application of high strength structural steel in seismic areas is limited due to the lack of relevant codes. This paper reviewed research progress on seismic behavior of high strength steel structures in recent years at the level of material properties, members and structures, and the corresponding findings were summarized. Highlights include:the static tensile mechanical properties, cyclic constitutive models and ultra-low cycle fatigue properties of materials, the seismic behavior of columns, beams and connections, and the seismic behavior of high strength steel frame structures. Finally, the prospect of further research on seismic behavior of high strength steel structures was presented.
-
Key words:
- steel structure /
- seismic /
- high strength steel /
- literature review /
- research progress
-
Shi G, Ban H Y, Shi Y J, et al. Overview of research progress for high strength steel structures[J]. Engineering Mechanics, 2013, 30(1):1-13. (in Chinese) 施刚, 班慧勇, 石永久,等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1):1-13. Li G Q, Wang Y B, Chen S W. The art of application of high-strength steel structures for buildings in seismic zones[J]. Advanced Steel Construction, 2015, 11(4):492-506. Li G Q, Wang Y B, Chen S W. The art of application of highstrength steel structures for buildings in seismic zones[J]. Advanced Steel Construction, 2015, 11(4):492-506. Wang Y Q, Lin Y, Zhou H, et al. Progress in the brittle fracture and fatigue of high strength steels and their welds[J]. Progress in Steel Building Structures, 2012, 14(5):21-28. (in Chinese) 王元清, 林云, 周晖,等. 高强度钢材及其焊缝脆性断裂与疲劳性能的研究进展[J]. 建筑钢结构进展, 2012, 14(5):21-28. Li G Q, Wang Y B, Chen S W, et al. State-of-the-art on research of high strength structural steels and key issues of using high strength steels in seismic structures[J]. Journal of Building Structures, 2013, 34(1):1-13. (in Chinese) 李国强, 王彦博, 陈素文,等. 高强度结构钢研究现状及其在抗震设防区应用问题[J]. 建筑结构学报, 2013, 34(1):1-13. 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010. MOHURD. Code for seismic design of buildings:GB 50011-2010[S]. Beijing:China Building Industry Press, 2010. (in Chinese) 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社, 2018. MOHURD. Code for design of steel structures:GB 50017-2017[S]. Beijing:China Building Industry Press, 2018. (in Chinese) Ban H Y, Shi G, Shi Y J, et al. Research progress on the mechanical property of high strength structural steels[J]. Advanced Materials Research, 2011(250/251/252/253):640-648. Ban H Y, Shi G, Shi Y J, et al. Research progress on the mechanical property of high strength structural steels[J]. Advanced Materials Research, 2011,250-253:640-648. BSI. Eurocode 3 design of steel structures:part 1-12:additional rules for the extension of EN 1993 up to steel grades S700:BS EN 1993-1-12[S]. London:BSI, 2007. BSI. Eurocode 3 Design of steel structures:part 1-12:additional rules for the extension of EN 1993 up to steel grades S700:BS EN 1993-1-12[S]. London:British Standards Institution, 2007. China State Bureau of Technical Supervision. Steel conversion of elongation values-part 1:carbon and low alloy steels:GB/T 17600-1998[S]. Beijing:Standards Press of China, 1999. (in Chinese) 全国钢标准化技术委员会. 钢的伸长率换算:GB/T 17600-1998[S]. 北京:中国标准出版社, 1999. BSI. Steel-conversion of elongation values-part 1:carbon and low alloy steels:BS EN ISO 2566-1:1999[S]. London:British Standards Institution, 1999. BSI. Steel-Conversion of elongation values-part 1:carbon and low alloy steels:BS EN ISO 2566-1:1999[S]. London:British Standards Institution, 1999. Ban H Y, Shi G. A review of research on high-strength steel structures[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2018, 171(8):625-641. Ban H Y, Shi G. A review of research on high-strength steel structures[J]. Proceedings of the Institution of Civil EngineersStructures and Buildings, 2018, 171(8):625-641. Langenberg P. Relation between design safety and Y/T ratio in application of welded high strength structural steels[C]//Proceedings of International Symposium on Applications of High Strength Steels in Modern Constructions and Bridges-Relationship of Design Specifications, Safety and Y/T Ratio. Beijing:China Steel Construction Society, 2008:28-46. Langenberg P. Relation between design safety and Y/T ratio in application of welded high strength structural steels[C]//Proceedings of International Symposium on Applications of High Strength Steels in Modern Constructions and Bridges-Relationship of Design Specifications, Safety and Y/T Ratio. Beijing:China Steel Construction Society, 2008:28-46. 付俊岩, 东涛. 建筑和桥梁钢结构用钢屈强比问题的探讨[C]//现代建筑与桥梁用高强度钢材应用技术国际研讨会论文集. 北京:2008. Fu J Y, Dong T. Discussion on yield ratio of steels for building and bridge steel structure[C]//International Symposium on Application Technology of High Strength Steel for Modern Buildings and Bridges. Beijing:2008. (in Chinese) Javidan F, Heidarpour A, Zhao X L, et al. Fundamental behaviour of high strength and ultra-high strength steel subjected to low cycle structural damage[J]. Engineering Structures, 2017, 143:427-440. Javidan F, Heidarpour A, Zhao X L, et al. Fundamental behaviour of high strength and ultra-high strength steel subjected to low cycle structural damage[J]. Engineering Structures, 2017, 143:427-440. Ho H C, Liu X, Chung K F, et al. Hysteretic behaviour of high strength S690 steel materials under low cycle high strain tests[J]. Engineering Structures, 2018, 165:222-236. Ho H C, Liu X, Chung K F, et al. Hysteretic behavior of high strength S690 steel materials under low cycle high strain tests[J]. Engineering Structures, 2018, 165:222-236. 陆建锋. 高强度钢材钢框架梁柱节点抗震性能试验研究[D]. 南京:东南大学, 2015. Lu J F. Experimental research on the seismic performance of beam-to-column connections in high strength steel frame[D]. Nanjing:Southeast University, 2015. Hu F X, Shi G, Shi Y J. Constitutive model for full-range elastoplastic behavior of structural steels with yield plateau:Formulation and implementation[J]. Engineering Structures, 2018, 171:1059-1070. Hu F X, Shi G, Shi Y J. Constitutive model for full-range elasto-plastic behavior of structural steels with yield plateau:formulation and implementation[J]. Engineering Structures, 2018, 171:1059-1070. Hu F X, Shi G, Shi Y J. Constitutive model for full-range elastoplastic behavior of structural steels with yield plateau:calibration and validation[J]. Engineering Structures, 2016, 118:210-227. Hu F X, Shi G, Shi Y J. Constitutive model for full-range elasto-plastic behavior of structural steels with yield plateau:calibration and validation[J]. Engineering Structures, 2016, 118:210-227. Hu F X, Shi G. Constitutive model for full-range cyclic behavior of high strength steels without yield plateau[J]. Construction & Building Materials, 2018, 162:596-607. Hu F X, Shi G. Constitutive model for full-range cyclic behavior of high strength steels without yield plateau[J]. Construction & Building Materials, 2018, 162:596-607. Shi G, Wang F, Dai G X, et al. Cyclic loading tests on high strength structural steel Q460C[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(6):1259-1265. (in Chinese) 施刚, 王飞, 戴国欣, 等. Q460C高强度结构钢材循环加载试验研究[J]. 东南大学学报(自然科学版), 2011, 41(6):1259-1265. Shi G, Wang F, Dai G X, et al. Experimental study of high strength structural steel Q460D under cyclic loading[J]. China Civil Engineering Journal, 2012, 45(7):48-55. (in Chinese) 施刚, 王飞, 戴国欣, 等. Q460D高强度结构钢材循环加载试验研究[J]. 土木工程学报, 2012, 45(7):48-55. 施刚, 王飞, 戴国欣, 等. Q460C高强度钢材焊缝连接循环加载试验研究[J]. 建筑结构学报, 2012,33(3):15-21. Shi G, Wang F, Dai G X, et al. Cyclic loading test on welded connection of high strength steel Q460C[J]. Journal of Building Structures, 2012,33(3):15-21. (in Chinese) Shi G, Wang M, Bai Y, et al. Experimental and modeling study of high-strength structural steel under cyclic loading[J]. Engineering Structures, 2012, 37(7):1-13. Shi G, Wang M, Bai Y, et al. Experimental and modeling study of high-strength structural steel under cyclic loading[J]. Engineering Structures, 2012, 37(7):1-13. Shi G, Wang M, Wang Y Q, et al. Cyclic behavior of 460 MPa high strength structural steel and welded connection under earthquake loading[J]. Advances in Structural Engineering, 2013, 16(3):451-466. Shi G, Wang M, Wang Y Q, et al. Cyclic behavior of 460 MPa high strength structural steel and welded connection under earthquake loading[J]. Advances in Structural Engineering, 2013, 16(3):451-466. Wang Y B, Li G Q, Cui W, et al. Experimental investigation and modeling of cyclic behavior of high strength steel[J]. Journal of Constructional Steel Research, 2015, 104:37-48. Wang Y B, Li G Q, Cui W, et al. Experimental investigation and modeling of cyclic behavior of high strength steel[J]. Journal of Constructional Steel Research, 2015, 104:37-48. Yin F, Yang L, Zong L, et al. Ultra-low cycle fatigue fracture of high-strength steel Q460C and its weld[J]. Journal of Materials in Civil Engineering, 2018, 30(11). DOI:10. 1061/(ASCE) MT. 1943-5533. 0002489. Yin F, Yang L, Zong L, et al. Ultra-low cycle fatigue fracture of high-strength steel Q460C and its weld[J]. Journal of Materials in Civil Engineering, 2018, 30(11). DOI:10. 1061/(ASCE) MT. 1943-5533. 0002489. Liu X Y. Investigations on fracture behavior of high strength steel materials and connections based on micromechanical models[D]. Beijing:Tsinghua University, 2015. 刘希月. 基于微观机理的高强钢结构材料与节点的断裂性能研究[D]. 北京:清华大学, 2015. Lemaitré J, Chaboche J L. Mechanics of solid materials[M]. Cambridge, UK:Cambridge University Press, 1990. Lemaitré J, Chaboche J L. Mechanics of solid materials[M]. Cambridge, UK:Cambridge University Press, 1990. 孙伟, 陈以一. 有限应变条件下滞回模式对Q460高强度结构钢的适用性[J]. 建筑结构学报, 2013, 34(3):93-99. Sun W, Chen Y Y. Applicability of cyclic stress-strain relation with limited strain to Q460 high strength structural steel[J]. Journal of Building Structures, 2013, 34(3):93-99. (in Chinese) Kanvinde A M, Deierlein G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133(6):701-712. Kanvinde A M, Deierlein G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133(6):701-712. Chen T. Extremely low cycle fatigue assessment of thick-walled steel piers[D]. Japan:Nagoya University, 2007. Chen T. Extremely low cycle fatigue assessment of thick-walled steel piers[D]. Japan:Nagoya University, 2007. Liao F F, Wang W, Chen Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2):153-174. Liao F F, Wang W, Chen Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2):153-174. Zhou H, Wang Y Q, Shi Y J, et al. Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micromechanics based fracture model[J]. International Journal of Fatigue, 2013, 48:90-100. Zhou H, Wang Y Q, Shi Y J, et al. Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013, 48:90-100. Youssef N F G, Bonowitz D, Gross J I. A survey of steel moment-resisting frame buildings affected by the 1994 Northridge earthquake[R]. Gaithersburg, MD:NIST, 1995. Youssef N F G, Bonowitz D, Gross J L. A survey of steel momentresisting frame buildings affected by the 1994 Northridge earthquake[R]. Gaithersburg, MD:NIST, 1995. Horikawa K, Sakino Y. Review of damage in welded joints caused by the kobe earthquake[J]. Transactions of JWRI, 1995, 24(2):1-10. Horikawa K, Sakino Y. Review of damage in welded joints caused by the kobe earthquake[J]. Transactions of JWRI, 1995, 24(2):1-10. Maranian P. Reducing brittle and fatigue failures in steel structures[R]. Reston:American Society of Civil Engineers, 2010. Maranian P. Reducing brittle and fatigue failures in steel structures[R]. Reston:American Society of Civil Engineers, 2010. Uang C M, Bruneau M, Whittaker A S, et al. Seismic design of steel structures:the seismic design handbook[M]. 2nd ed. Dordrecht:Kluwer Academic Publishers, 2001. Uang C M, Bruneau M, Whittaker A S, et al. Seismic design of steel structures-the seismic design handbook[M]. 2nd ed. Dordrecht, the Netherlands:Kluwer Academic Publishers, 2001. 张亚军. 10CrNiMo高强钢的低周疲劳特性[J]. 北京科技大学学报, 2011, 33(1):22-27. Zhang Y J. Low cycle fatigue characteristic of 10CrNiMo high-strength steel[J]. Chinese Journal of Engineering, 2011, 33(1):22-27. (in Chinese) 曾庆祥, 何国求, 陈成澍. 一种高强度钢的低周疲劳特性及其微观机理的研究[J]. 西南交通大学学报, 1999, 34(2):190-195. Zeng Q X, He G Q, Chen C P. A study on the low cycle fatigue characteristics and micro mechanisms of a high strength steel[J]. Journal of Southwest Jiaotong University, 1999, 34(2):190-195. (in Chinese) 闵杰, 盛光敏, 吴结才, 等. 热轧H型钢的高应变低周疲劳性能研究[J]. 钢铁研究学报, 2009, 21(11):40-44. Men J, Sheng G M, Wu J C, et al. Analysis of high strain low cycle fatigue properties of hot rolled H-beam steel[J]. Journal of Iron and Steel Research, 2009, 21(11):40-44. (in Chinese) Lin Z Y. Study on high strain and low cycle fatigue performance of hot rolled high strength H-beam[D]. Chongqing:Chongqing University, 2011. 林振邺. 热轧高强H型钢高应变低周疲劳性能研究[D]. 重庆:重庆大学, 2011. Luo Y R, Wang Q Y. Advances in research on high strain low cycle fatigue(LCF) and extremely low cycle fatigue (ELCF) properties of anti-seismic building steel[J]. Sichuan Building Science, 2011, 37(3):139-145. (in Chinese) 罗云蓉, 王清远. 建筑用抗震钢高应变低周及超低周疲劳性能研究进展[J]. 四川建筑科学研究, 2011, 37(3):139-145. 罗云蓉, 王清远, 刘永杰, 等. Q235、Q345钢结构材料的低周疲劳性能[J]. 四川大学学报(工程科学版), 2012, 44(2):169-175. Luo Y R, Wang Q Y, Liu Y J, et al. Low cycle fatigue properties of steel structure materials Q235 and Q345[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(2):169-175. (in Chinese) Kiran R, Khandelwal K. A micromechanical cyclic void growth model for ultra-low cycle fatigue[J]. International Journal of Fatigue, 2015, 70:24-37. Kiran R, Khandelwal K. A micromechanical cyclic void growth model for ultra-low cycle fatigue[J]. International Journal of Fatigue, 2015, 70:24-37. Jia L J, Kuwamura H. Ductile fracture model for structural steel under cyclic large strain loading[J]. Journal of Constructional Steel Research, 2015, 106:110-121. Jia L J, Kuwamura H. Ductile fracture model for structural steel under cyclic large strain loading[J]. Journal of Constructional Steel Research, 2015, 106:110-121. Jia L J, Ikai T, Shinohara K, et al. Ductile crack initiation and propagation of structural steels under cyclic combined shear and normal stress loading[J]. Construction & Building Materials, 2016, 112:69-83. Jia L J, Ikai T, Shinohara K, et al. Ductile crack initiation and propagation of structural steels under cyclic combined shear and normal stress loading[J]. Construction & Building Materials, 2016, 112:69-83. Liu Y, Jia L J, Ge H, et al. Ductile-fatigue transition fracture mode of welded T-joints under quasi-static cyclic large plastic strain loading[J]. Engineering Fracture Mechanics, 2017, 176:38-60. Liu Y, Jia L J, Ge H, et al. Ductile-fatigue transition fracture mode of welded T-joints under quasi-static cyclic large plastic strain loading[J]. Engineering Fracture Mechanics, 2017, 176:38-60. Lin X, Okazaki T, Chung Y L, et al. Flexural performance of bolted built-up columns constructed of H-SA700 steel[J]. Journal of Constructional Steel Research, 2013, 82(2):48-58. Lin X, Okazaki T, Chung Y L, et al. Flexural performance of bolted built-up columns constructed of H-SA700 steel[J]. Journal of Constructional Steel Research, 2013, 82(2):48-58. 2 Shi G, Deng C S, Ban H Y, et al. Experimental study on hysteretic behavior of high strength steel box-section columns[J]. Journal of Building Structures, 2012, 33(3):1-7. (in Chinese) 施刚, 邓椿森, 班慧勇,等. 高强度钢材箱形柱滞回性能试验研究[J]. 建筑结构学报, 2012, 33(3):1-7. Shi G, Wang J, Bai Y, et al. Experimental study on seismic behavior of 460 MPa high strength steel box-section columns[J]. Advances in Structural Engineering, 2014, 17(7):1045-1059. Shi G, Wang J, Bai Y, et al. Experimental study on seismic behavior of 460 MPa high strength steel box-section columns[J]. Advances in Structural Engineering, 2014, 17(7):1045-1059. 施刚, 邓椿森, 班慧勇,等. Q460高强度钢材工形压弯构件抗震性能的试验研究[J]. 土木工程学报, 2012(10):53-61. Shi G, Deng C S, Ban H Y, et al. Experimental study on the seismic behavior of Q460 high strength steel I-columns[J]. China Civil Engineering Journal, 2012(10):53-61. (in Chinese) Wang J, Shi G, Shi Y J. Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4):611-622. Wang J, Shi G, Shi Y J. Experimental research on behavior of 460 MPa high strength steel I-section columns under cyclic loading[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4):611-622. 李国强, 王彦博, 陈素文,等. Q460C高强度结构钢焊接H形和箱形截面柱低周反复加载试验研究[J]. 建筑结构学报, 2013, 34(3):80-86. Li G Q, Wang Y B, Chen S W, et al. Experimental study of Q460C high strength steel welded H-section and box-section columns under cyclic loading[J]. Journal of Building Structures, 2013, 34(3):80-86. (in Chinese) Li G Q, Wang Y B, Chen S W, et al. Finite element analysis on hysteretic behavior of Q460C high strength steel box-section and H-section columns[J]. Journal of Building Structures, 2013, 34(3):87-92. (in Chinese) 李国强, 王彦博, 陈素文,等. Q460C高强度钢柱滞回性能有限元分析[J]. 建筑结构学报, 2013, 34(3):87-92. Wang Y B, Li G Q, Cui W, et al. Seismic behavior of high strength steel welded beam-column members[J]. Journal of Constructional Steel Research, 2014, 102(11):245-255. Wang Y B, Li G Q, Cui W, et al. Seismic behavior of high strength steel welded beam-column members[J]. Journal of Constructional Steel Research, 2014, 102(11):245-255. Zhou F, Chen Y Y, Tong L W, et al. Experimental investigation on mechanical behavior of high strength steel welded Hsection members[J]. Industrial Construction, 2012, 42(1):32-36. (in Chinese) 周锋, 陈以一, 童乐为,等. 高强度钢材焊接H形构件受力性能的试验研究[J]. 工业建筑, 2012, 42(1):32-36. Chen S W, Lu Z L, Li G Q, et al. Cyclic loading tests of Q690D high strength steel welded columns[J]. Journal of Building Structures, 2014, 35(12):97-103. (in Chinese) 陈素文, 陆志立, 李国强,等. Q690D高强钢焊接截面柱低周反复加载试验研究[J]. 建筑结构学报, 2014, 35(12):97-103. Chen S W, Chen X, Wang Y B, et al. Experimental and numerical investigations of Q690D H-section columns under lateral cyclic loading[J]. Journal of Constructional Steel Research, 2016, 121:268-281. Chen S W, Chen X, Wang Y B, et al. Experimental and numerical investigations of Q690D H-section columns under lateral cyclic loading[J]. Journal of Constructional Steel Research, 2016, 121:268-281. Wang Y, Kang L. Seismic performance of Q690 high strength steel welded H-section columns[J]. Procedia Engineering, 2017, 210:286-296. Wang Y, Kang L. Seismic performance of Q690 high strength steel welded H-section columns[J]. Procedia Engineering, 2017, 210:286-296. Schillo D I N, Feldmann D I M. Experiments on the rotational capacity of beams made of high-strength steel[J]. Steel Construction:Design and Research, 2018, 11(1):42-48. Schillo D I N, Feldmann D I M. Experiments on the rotational capacity of beams made of high-strength steel[J]. Steel Construction:Design and Research, 2018, 11(1):42-48. Shakil S, Wei L, Puttonen J. Response of high-strength steel beam and single-storey frame in fire:numerical simulation[J]. Journal of Constructional Steel Research, 2018, 148:551-561. Shakil S, Wei L, Puttonen J. Response of high-strength steel beam and single-storey frame in fire:numerical simulation[J]. Journal of Constructional Steel Research, 2018, 148:551-561. Wang W, Zhang L, He P. A numerical investigation on restrained high strength Q460 steel beams including creep effect[J]. International Journal of Steel Structures, 2018,18(5):1497-1507. Wang W, Zhang L, He P. A numerical investigation on restrained high strength Q460 steel beams including creep effect[J]. International Journal of Steel Structures, 2018, 18(5):1497-1507. Wang W, Zhou H, Zhou Y, et al. A simplified approach for fire resistance design of high strength Q460 steel beams subjected to non-uniform temperature distribution[J]. Fire Technology, 2018, 54(2):437-460. Wang W, Zhou H, Zhou Y, et al. A simplified approach for fire resistance design of high strength Q460 steel beams subjected to non-uniform temperature distribution[J]. Fire Technology, 2018, 54(2):437-460. 段兰, 张亮, 王春生,等. 高强度工字钢梁抗弯性能试验[J]. 长安大学学报(自然科学版), 2012, 32(6):52-58. Duan L, Zhang L, Wang C S, et al. Flexural behavior test of high strength steel I-beam[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(6):52-58. (in Chinese) 段兰, 王春生, 王世超,等. 高强度工字钢梁腹板抗剪性能试验[J]. 中国公路学报, 2017, 30(3):65-71. Duan L, Wang C S, Wang S C, et al. Web shear behavior test for high strength I steel girders[J]. China Journal of Highway and Transport, 2017, 30(3):65-71. (in Chinese) Suzuki T, Ogawa T, Ikarashi K, et al. Effects of the yield ratio on the behavior and the energy absorbing capacity of high strength steel beams under the repeated load[J]. Journal of Structural & Construction Engineering, 1996, 61(135):135-144. (in Japanese) Suzuki T, Ogawa T, Ikarashi K, et al. Effects of the yield ratio on the behavior and the energy absorbing capacity of high strength steel beams under the repeated load[J]. Journal of Structural & Construction Engineering, 1996, 61(135):135-144. Green P S. The inelastic behavior of flexural members fabricated from high performance steel Doctoral Thesis[D]. Bethlehem, Pennsylvania, US:Lehigh University, 2000. Green P S. The inelastic behavior of flexural members fabricated from high performance steel doctoral thesis[D]. Bethlehem, Pennsylvania, US:Lehigh University, 2000. Sun F F, Yang F, Li G Q, et al. Experimental research on high-strength hot-rolled H-cantilever beam under cyclic loading[J]. Industrial Construction, 2012, 42(1):46-50. (in Chinese) 孙飞飞, 杨芳, 李国强,等. 高强热轧H型钢悬臂梁低周反复试验研究[J]. 工业建筑, 2012, 42(1):46-50. Herion S, Hrabowski J, Ummenhofer T. Low-cycle fatigue behaviour of high-strength steel butt welds[C]//Proceedings of the Twenty-First (2011) International Offshore and Polar Engineering Conference. Hawaii:USA, 2011:282-287. Herion S, Hrabowski J, Ummenhofer T. Low-cycle fatigue behaviour of high-strength steel butt welds[C]//Proceedings of the Twenty-First (2011) International Offshore and Polar Engineering Conference. Hawaii:USA, 2011:282-287. 尹飞. 强震下高强度结构钢材焊接节点的高应变低周疲劳断裂研究[D]. 北京:北京工业大学, 2018. Yin F. Study on high-strain low-cycle fatigue fracture of high strength steel welded connections under strong earthquakes[D]. Beijing:Beijing University of Technology, 2018. Kuwamura H, Suzuki T. Low-cycle fatigue resistance of welded joints of high-strength steel under earthquake loading[C]//Proc. of the 10th World Conf. on Earthquake Engineering. Madrid:Spain, 1992:2851-2856. Kuwamura H, Suzuki T. Low-cycle fatigue resistance of welded joints of high-strength steel under earthquake loading[C]//Proc. of the 10th World Conf. on Earthquake Engineering. Madrid:Spain, 1992:2851-2856. Huang Y H, Onishi Y, Hayashi K. Inelastic behavior of high strength steels with weld connections under cyclic gradient stress[C]//Proc. of the 11th World Conference on Earthquake Engineering. Oxford:Elsevier Science Ltd, 1996. Huang Y H, Onishi Y, Hayashi K. Inelastic behavior of high strength steels with weld connections under cyclic gradient stress[C]//Proc. of the 11th World Conference on Earthquake Engineering. Oxford:Elsevier Science Ltd, 1996. Oh S H, Park H Y. A study to enhance the deformation capacity of beam-to-column connections using high strength steel having high yield ratio[J]. International Journal of Steel Structures, 2016, 16(1):73-89. Oh S H, Park H Y. A study to enhance the deformation capacity of beam-to-column connections using high strength steel having high yield ratio[J]. International Journal of Steel Structures, 2016, 16(1):73-89. 孙飞飞, 孙密, 李国强,等. Q690高强钢端板连接梁柱节点抗震性能试验研究[J]. 建筑结构学报, 2014, 35(4):116-124. Sun F F, Sun M, Li G Q, et al. Experimental study on seismic behavior of high strength steel beam-to-column end-plate connections[J]. Journal of Building Structures, 2014, 35(4):116-124. (in Chinese) Liu X Y, Wang Y Q, Shi Y J, et al. Experimental study on low-cycle fatigue fracture behavior of high strength steel beamto-column connection[J]. Journal of Building Structures, 2018, 39(2):28-36. (in Chinese) 刘希月, 王元清, 石永久,等. 高强度钢框架梁柱节点低周疲劳断裂性能试验研究[J]. 建筑结构学报, 2018, 39(2):28-36. 胡阳阳, 林旭川, 吴开来,等. 带"保险丝"连接板的焊接高强钢梁柱节点抗震性能试验研究[J]. 工程力学, 2017, 34(增刊1):143-148. Hu Y Y, Lin X C, Wu K L, et al. Cyclic loading test on high strength steel beam-to-column connections with damage control fuses[J]. Engineering Mechanics, 2017, 34(S1):143-148. (in Chinese) Hu F X, Shi G, Shi Y J. Fracture behavior of beam-column connections using high strength steel based on fracture mechanics[J]. Engineering Mechanics, 2015, 32(4):41-46. (in Chinese) 胡方鑫, 施刚, 石永久. 基于断裂力学的高强度钢材梁柱节点受力性能分析[J]. 工程力学, 2015, 32(4):41-46. 陈学森. 高强度钢材板式加强型梁柱节点抗震性能及设计方法[D]. 北京:清华大学, 2018. Chen X S. Seismic behavior and design method of high strength steel plate reinforced beam-to-column connections[D]. Beijing:Tsinghua University, 2018. 王磊, 班慧勇, 石永久, 等. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学, 2018, 35(11):68-78. Wang L, Ban H Y, Shi Y J, et al. Finite element analysis on aseismic behavior of high-strength steel beam-to-column connections in steel frames based on micromechanics of fracture[J]. Engineering Mechanics, 2018, 35(11):68-78. (in Chinese) Matsui C, Mitani I. Inelastic behavior of high strength steel frames subjected to constant vertical and alternating horizontal loads[C]//Proceedings of 6th World Conference on Earthquake Engineering. New Delhi:India, 1977:3169-3174. Matsui C, Mitani I. Inelastic behavior of high strength steel frames subjected to constant vertical and alternating horizontal loads[C]//Proc. 6th World Conference on Earthquake Engineering (WCEE). New Delhi:India, 1977:3169-3174. Tenchini A, D'aniello M, Rebelo C, et al. Seismic performance of dual-steel moment resisting frames[J]. Journal of Constructional Steel Research, 2014,101:437-454. Tenchini A, D'aniello M, Rebelo C, et al. High strength steel in chevron concentrically braced frames designed according to Eurocode 8[J]. Engineering Structures, 2016,124:167-185. Dubina D, Stratan A, Dinu F. Dual high-strength steel eccentrically braced frames with removable links[J]. Earthquake Engineering & Structural Dynamics, 2010, 37(15):1703-1720. Dubina D, Stratan A, Vulcu C, et al. High strength steel in seismic resistant building frames[J]. Steel Construction:Design and Research, 2015, 8(3):173-177. Nakai M, Nakamura Y, Maeda S, et al. Proposal for damage-free design method of steel structure utilizing high strength steel under great earthquake[J]. Journal of Structural & Construction Engineering, AIJ, 2011,76(666):1443-1451. Shinsai N, Suita K, Koetaka Y. Mechanical performance and seismic response of knee brace damper structure of H-SA700 high strength steel members made by undermatched welds[J]. Journal of Structural & Construction Engineering, AIJ, 2012,77(682):1959-1968. Nakai M, Tsuda K, Mase S, et al. Performance verification through full-scale static loading tests for a structural system using high strength stee[J]. Journal of Structural & Construction Engineering, AIJ, 2013,78(687):1007-1016. Takeuchi T, Ohyama T, Ishihara T. Seismic performance of highstrength steel frames with energy dissipation braces-part 1:cumulative cyclic deformation capacity of high-strength steel frames with energy dissipation braces[J]. Journal of Structural & Construction Engineering, AIJ, 2010,75(655):1671-1679. Takeuchi T, Ohyama T, Matsui R. Seismic performance of highstrength steel frames with energy dissipation braces-part 2:cumulative deformation capacity evaluation of high-strength steel beam ends subjected to cyclic bending moment[J]. Journal of Structural & Construction Engineering, AIJ, 2011,76(661):695-702. Hu F X, Shi G, Shi Y J. Experimental study on seismic behavior of high strength steel frames:global response[J]. Engineering Structures, 2017, 131:163-179. 段留省, 苏明周, 焦培培,等. 高强钢组合Y形偏心支撑钢框架抗震性能试验研究[J]. 建筑结构学报, 2014, 35(12):64-71. 连鸣, 苏明周, 李慎,等. Y形偏心支撑高强钢框架结构抗震性能振动台试验研究[J]. 建筑结构学报, 2015, 36(8):16-24. 李慎, 田建勃, 马辉,等. 基于性能设计的高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 建筑结构, 2015(6):71-79. 郭艳, 苏明周, 胡长明. 高强钢组合偏心支撑框架抗震性能研究[J]. 地震工程学报, 2016, 38(2):176-184. Duan L S, Su M Z, Li H. Experimental study on seismic behavior of high strength steel composite K-type eccentrically braced frames[J]. Advanced Materials Research, 2014, 838-841(7):559-563. Wang F, Su M, Hong M, et al. Cyclic behaviour of Y-shaped eccentrically braced frames fabricated with high-strength steel composite[J]. Journal of Constructional Steel Research, 2016, 120(2):176-187. Tian X, Su M, Lian M, et al. Seismic behavior of K-shaped eccentrically braced frames with high-strength steel:shaking table testing and FEM analysis[J]. Journal of Constructional Steel Research, 2018, 143:250-263. 期刊类型引用(11)
1. 路殿成,樊明驰,陈诗颖,吴成龙,袁维振,张纪刚. 新型装配式型钢混凝土组合节点非线性分析. 混凝土. 2024(07): 178-185 . 百度学术 2. 杨志军,王彦博,杨国涛. Q690D钢材箱形截面框架柱抗震性能. 湖南大学学报(自然科学版). 2023(09): 69-78 . 百度学术 3. 张庆素,陈振业,陈波,齐建军,胡晓波,冯伟. Q690抗震耐蚀钢埋弧焊熔敷金属性能研究. 电焊机. 2022(03): 105-110 . 百度学术 4. 张龙龙. 高强度结构钢4130品种开发. 冶金与材料. 2022(02): 128-129+132 . 百度学术 5. 李海锋,洪依萍,骆杰鑫,陈赛剑,舒智. 内嵌耗能壳板高强钢圆钢管桥墩抗震性能. 中国矿业大学学报. 2022(04): 769-778 . 百度学术 6. 池海涛,刘馥兵,胡晓光. 7A41铝合金的力学性能和耐蚀性能. 金属热处理. 2022(08): 88-94 . 百度学术 7. 孙国亭. 高强度钢材钢结构研究进展. 冶金与材料. 2022(04): 42-43+46 . 百度学术 8. 张海龙,赵雪航,李海锋. 开孔高强钢板材料力学性能的试验研究. 工业建筑. 2021(01): 157-162+199 . 百度学术 9. 周云开,闫健,麦琦坚,黄学良. 工字钢梁抗弯实验教学探索与实践. 山西建筑. 2021(18): 188-190+195 . 百度学术 10. 葛建舟,黄学伟,赵军,赵威,魏晨晨. Q690D高强钢基于循环微孔扩展模型的断裂预测分析. 钢结构(中英文). 2021(07): 18-28 . 本站查看 11. 张龙龙. Q420矩形坯角横裂原因分析及控制措施. 中国金属通报. 2021(12): 136-138 . 百度学术 其他类型引用(16)
点击查看大图
计量
- 文章访问数: 423
- HTML全文浏览量: 72
- PDF下载量: 54
- 被引次数: 27