Application of Steel-Concrete Composite Structure in Ocean Engineering
-
摘要: 海洋工程建设是我国海洋强国战略实施的重要基础和保障。相比陆地工程,海洋工程面临更加复杂苛刻的建造环境和条件,其设计、建造、施工难度通常更大,因而对结构工程提出了新的挑战。钢-混凝土组合结构由于充分利用钢材和混凝土各自性能优势,扬长避短,优化组合,具有显著的性能优势和综合经济效益,在海洋工程中拥有广阔的应用前景。本文从跨海桥梁、海底沉管隧道和海上浮体平台三方面综述了清华大学组合结构研究团队近年来在海洋工程组合结构研发和应用方面的工作:1)提出了新型抗拔不抗剪连接技术,并与传统支座升降、预应力、施工工序优化等技术结合,形成跨海连续组合梁桥负弯矩综合抗裂技术,与现有预应力抗裂方法相比具有显著的施工和运维成本优势,与混凝土结构相比具有明显的抗裂性能优势。这一新技术将极大提升结构的耐久性,已经在大连湾跨海大桥的结构设计中得到应用,为组合结构跨海桥梁的推广应用提供了有效的技术支撑。2)研发了适用于跨海多塔斜拉桥的新型双钢板-混凝土组合桥塔,从界面连接和结构整体受力性能两个维度开展研究。结果表明,其在开孔板连接件的作用下可以实现钢与混凝土的协同工作,与纯钢结构和混凝土结构桥塔相比有更高的承载能力、刚度和延性。同时钢板可兼作混凝土模板,提高施工效率,混凝土对钢壳的约束作用也解决了纯钢结构易局部失稳的问题。新型组合桥塔已在南京长江五桥工程中得到应用,刚度、承载力等关键性能指标的显著优势有助于新型组合结构桥塔在未来跨海多塔斜拉桥工程中得到进一步的推广与应用。3)提出了适用于海底沉管隧道的隔舱式双钢板-混凝土组合结构,揭示了其抗弯、抗剪和型钢连接件性能,提出了相应的设计方法。结果表明,相对于传统钢筋混凝土结构,组合结构尺寸小,承载能力强,抗震适应性好。双钢板既可作为混凝土模板,也可起到受力与防水的多重作用。除此以外,该结构施工便捷,尺寸不受加工设备限制,预制厂地要求低。该成果已在深中通道沉管隧道段得到应用,是未来跨海隧道的重要发展方向。4)研发了海上超大型钢-混凝土组合结构漂浮平台,将其应用于海上超大型浮式平台的建设,基于水弹性响应及结构强度分析,对大型钢-混凝土组合箱式浮体平台进行了案例设计和分析。结果表明,其可在提高结构防火、抗爆、抗冲击性能的基础上,增强构件的稳定性及耐久性,显著减小结构用钢量,同时组合浮式平台不用设置加劲肋,设计和施工便捷,维护成本低,具有良好的发展前景。研究与实践表明,组合结构由于其灵活多样的结构形式,即使面对海洋工程复杂苛刻的荷载环境条件和使用功能需求,也能发挥其性能优势,解决工程难题。本文所提出的新型组合结构体系具有较为显著的性能优势,取得了令人满意的综合经济效益,为海洋工程建设提供了崭新的思路和选择,有力地推动了组合结构在海洋工程中的应用。目前,组合结构在海洋工程中的应用仍处于起步阶段,尚需在复杂荷载响应分析、高性能新材料应用、结构形式多样性和适用性等方面进一步开展深入研究。
-
关键词:
- 海洋工程 /
- 钢-混凝土组合结构 /
- 跨海桥梁 /
- 海底沉管隧道 /
- 海上漂浮平台 /
- 抗拔不抗剪连接件 /
- 双钢板-混凝土组合桥塔 /
- 隔舱式双钢板-混凝土组合结构 /
- 组合结构超大型海上浮式平台
Abstract: Ocean engineering and construction are promising foundations for the implementation of China’s maritime power strategy. Compared to land engineering, ocean engineering requires more complex and demanding construction environments and conditions, which pose new challenges to structural engineering. Steel-concrete composite structures have broad application prospects in ocean engineering with significant performance advantages and comprehensive economic benefits as they successfully combine the respective advantages of steel and concrete. This paper summarizes the research work of composite structure research team of Tsinghua University with respect to the development and application of three types of composite structures in ocean engineering: cross-sea bridges, submarine immersed tunnels, and floating offshore platforms. Four new structural systems are proposed, including a long-span continuous beam bridge with integrated anti-crack technology, a double-steel-plate-concrete composite bridge tower suitable for cross-sea multi-tower cable-stayed bridges, a compartment steel-concrete-steel composite structure suitable for submarine immersed tunnels, and steel-concrete composite very large floating structure (VLFS).The key load-transferring mechanisms, mechanical performance, and design methods of the new structures are studied in depth, which are applied to the design of large-scale engineering projects such as the Dalian Bay Bridge, Nanjing No.5 Yangtze River Bridge, Shenzhen-Zhongshan Link, and offshore VLFS.Research and practice demonstrate that the new composite structural system has significant performance advantages and achieves satisfactory comprehensive economic benefits, thus providing new ideas and choices for ocean engineering construction and effectively promoting the application of steel-concrete composite structures in ocean engineering.-
Key words:
- ocean engineering /
- steel-concrete composite structure /
- cross-sea bridges /
- submarine immersed tunnels /
- floating offshore platforms /
- URSP connector /
- double-steel-plate-concrete composite bridge tower /
- compartment steel-concrete-steel composite structure /
- steel-concrete composite very large floating structure
-
Nie J G. Steel-concrete composite bridge structure[M]. Beijing:China Communications Press, 2011. (in Chinese) Nie J G, Wang J J, Gou S K, et al. Technological development and engineering applications of novel steel-concrete composite structures[J]. Frontiers of Structural and Civil Engineering, 2019, 13(1):1-14. Liu X D. Overall Design and Technical Challenges of Hong Kong-Zhuhai-Macao Bridge[C]//Proceedings of the 15th China Marine (Ashore) Engineering Symposium (Part 1). 2011. Sun J Y, Deng S H, Zhang J. Technical Measures for Concrete Crack Resistance of Cross-Sea Bridges[J]. Journal of Railway Science and Engineering, 2007, 4(1):58-62. (in Chinese) Liu W H, Chang D B. Study on the hogging moment area optimization design of composite beams[J]. Journal of Jilin Jianzhu University, 2008, 25(3):1-3. (in Chinese) Guo F Q, Yu Z W. Calculation of crack resistance of prestressed steel-concrete continuous composite beams[J]. Steel Structure, 2003, 18(2):21-24. (in Chinese) Zhao J, Zheng Z J. Stress analysis of group shear studs of long span steel-concrete composite beam bridge[J]. Bridge Construction, 2013, 43(3):48-53. (in Chinese) Li Z S. Research on structural system stiffness of multi-tower long-span cable-stayed bridge based on static and dynamic characteristics[D]. Beijing:Beijing Jiaotong University, 2014. (in Chinese) Guest J K, Draper P, Billington D P. Santiago Calatrava's Alamillo bridge and the idea of the structural engineer as artist[J]. Journal of Bridge Engineering, 2013, 18(10):936-945. Virlogeux M. Normandie bridge design and construction[J]. Structures & Buildings, 1993, 104(3):357-360. Wu L L, Nie J G. Key parameters analysis of non-tensile prestressing technology for steel-concrete continuous composite beams[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(4):156-162. Nie J G, Tao M X, Nie X, et al. New anti-pulling and non-shear-resistant connection technology and its application[J]. Chinese Journal of Civil Engineering, 2015(4):7-14. (in Chinese) Nie J G, Li Y X, Tao M X, et al. Uplift-restricted and slip permitted T-shape connectors[J]. Journal of Bridge Engineering, 2014, 20(4).Doi: 10.1061/(ASCE)BE.1943-5592.0000660. Nie J G, Li Y X, Tao M X, et al. Experimental research on uplift performance of a new type of uplift restricted-slip free connector[J]. China Journal of Highway and Transport, 2014, 27(4):38-45. (in Chinese) Han S W, Tao M X, Nie J G, et al. Experimental and numerical investigation on steel concrete composite beam with uplift-restricted and slip-permitted screw-type connectors[C]//Proceedings of fourteenth international symposium on structural engineering. Beijing:2016. Tomlinson M, Tomlinson A, Chapman M L, et al. Shell composite construction for shallow draft immersed tube tunnels[C]//Proceedings of the ICE international conference on immersed tube tunnel techniques. Manchester (UK):Thomas Telford, 1989. Narayanan R, Roberts T M, Naji F J. Design guide for steel-concrete-steel sandwich construction, Volume 1:general principles and rules for basic elements[M]. Ascot, Berkshire, UK:The Steel Construction Institute, 1994. Bowerman H, Chapman J C. Bi-Steel steel-concrete-steel sandwich construction[C]//Composite Construction in Steel and Concrete IV Conference. 2014:656-667. Xie M, Chapman J C. Developments in sandwich construction[J]. Journal of Constructional Steel Research, 2006, 62(11):1123-1133. Bowerman H G, Gough M S, King C M. Bi-Steel design and construction guide[M]. Scunthorpe:British Steel Ltd, 1999. Matsuishi M, Iwata S. Study on the strength of sandwich-type composite structures composed of steel plate and concrete (4th report)[J]. Transactions of the Japan Institute of Shipbuilding, 1988,164:395-405. Kimura H, Kojima K, Moritaka H. On the deformation of a submerged box during offshore construction[C]//Proceedings of the Tunnel Engineering Conference.2002. Japan Society of Civil Engineers. Steel concrete sandwich structural design guidelines (draft)[M]. Tokyo:Concrete Library, 1992. Tamai S, Ikeda Y, Abe T, et al. Application of high-fluidity concrete to a submerged box suspended in the sea:Naha submerged box (No.3 box) Construction[J]. Concrete Engineering, 2003,41:60-65. Yoshimoto Y, Yoshida H, Tamai S, et al. Development and construction of filled concrete in shin-wakado sink tunnel[C]//Proceedings of Civil Engineering Technology Symposium. 2006:99-106. Song S Y, Nie J G, Xu G P, et al. Development and application of steel-concrete-steel composite structure in immersed tunnel[J]. Chinese Journal of Civil Engineering, 2019(4):109-120. (in Chinese) Guo Y T, Tao M X, Nie X, et al. The bending capacity of steel-concrete-steel composite structures considering local buckling and casting imperfection[J]. Journal of Structural Engineering, 2019, 145(10). Doi: 10.1061/(ASCE)ST.1943-541X.0002385. Guo Y T, Nie X, Tao M X, et al. Selected series method on buckling design of stiffened steel-concrete composite plates[J]. Journal of Constructional Steel Research, 2019, 161:296-308. Guo Y T, Tao M X, Nie X, et al. Experimental and theoretical studies on the shear resistance of steel-concrete-steel composite structures with bidirectional steel webs[J]. Journal of Structural Engineering, 2018, 144(10). Doi: 10.1061/(ASCE)ST.1943-541X.0002182. Isobe E. Research and development of Mega-Float[C]//Proceedings of the 3rd International Workshop on Very Large Floating Structures, 1999:7-13. Remmers G, Zueck R, Palo P, et al. Mobile offshore base[C]//The Eighth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 1998. Wang X Q, Tao M X. Structural design and analysis of a new type of very large steel-concrete composite box floating platform at sea[J]. Engineering Mechanics, 2019, 36(11):147-157. (in Chinese) Wu Y. Hydroelasticity of floating bodies[D]. London:University of Brunel, 1984. Babarit A, Delhommeau G. Theoretical and numerical aspects of the open source BEM solver NEMOH[C]//11th European Wave and Tidal Energy Conference (EWTEC2015). 2015. Price W G, Wu Y S. Hydroelasticity of marine structures[C]//Proceedings of the XVIth International Congress of Theoretical and Applied Mechanics. 1985:311-337. Kagemoto H, Yue D. Interactions among multiple three-dimensional bodies in water waves:an exact algebraic method[J]. Journal of Fluid Mechanics, 1986, 166:189-209. Doi: 10.1017/S0022112086000101. Yago K, Endo H. On the hydoroelastic response of box-shaped floating structure with shallow draft[J]. Journal of the Society of Naval Architects of Japan, 1996, 180:341-352.
点击查看大图
计量
- 文章访问数: 1473
- HTML全文浏览量: 343
- PDF下载量: 64
- 被引次数: 0