留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷弯薄壁卷边C形截面不锈钢构件多种屈曲性能研究进展

梁顿 范圣刚 舒赣平 郑宝锋

梁顿, 范圣刚, 舒赣平, 郑宝锋. 冷弯薄壁卷边C形截面不锈钢构件多种屈曲性能研究进展[J]. 钢结构(中英文), 2025, 40(2): 1-9. doi: 10.13206/j.gjgS24092003
引用本文: 梁顿, 范圣刚, 舒赣平, 郑宝锋. 冷弯薄壁卷边C形截面不锈钢构件多种屈曲性能研究进展[J]. 钢结构(中英文), 2025, 40(2): 1-9. doi: 10.13206/j.gjgS24092003
Dun Liang, Shenggang Fan, Ganping Shu, Baofeng Zheng. Research Progress on Various Buckling Performance of Cold-Formed Thin-Walled Stainless Steel Members with Lipped C-Section[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 1-9. doi: 10.13206/j.gjgS24092003
Citation: Dun Liang, Shenggang Fan, Ganping Shu, Baofeng Zheng. Research Progress on Various Buckling Performance of Cold-Formed Thin-Walled Stainless Steel Members with Lipped C-Section[J]. STEEL CONSTRUCTION(Chinese & English), 2025, 40(2): 1-9. doi: 10.13206/j.gjgS24092003

冷弯薄壁卷边C形截面不锈钢构件多种屈曲性能研究进展

doi: 10.13206/j.gjgS24092003
详细信息
    作者简介:

    梁顿,博士,主要从事钢结构的研究。

    通讯作者:

    范圣刚,博士,教授,主要从事不锈钢结构的设计理论与方法,101010393@seu.edu.cn。

Research Progress on Various Buckling Performance of Cold-Formed Thin-Walled Stainless Steel Members with Lipped C-Section

  • 摘要: 不锈钢材料因其优良的表观性能和卓越的耐腐蚀性,已被广泛应用于建筑工程的屋面、屋盖、幕墙等结构部件中。其中,卷边C形截面不锈钢构件,凭借其较高的材料利用率和良好的力学特性,成为了建筑领域中重要的应用截面形式。该截面形状在提高构件惯性矩和抗扭刚度的同时,也能有效减少材料用量,满足结构安全与经济性的双重要求。然而,由于其复杂的屈曲行为和破坏机理,卷边C形截面不锈钢构件的屈曲性能仍然是当前研究的重点和难点。迄今为止,学者们根据破坏形态将卷边C形截面不锈钢构件的屈曲性能分为了单一模态屈曲(整体屈曲、局部屈曲和畸变屈曲)和多模态耦合屈曲(整体-局部屈曲、整体-畸变屈曲、局部-畸变屈曲和整体-局部-畸变屈曲)。对于屈曲模态的识别主要通过广义梁理论法、约束有限条法和有限元结合法,3种方法依托于不同的计算软件,由此决定的适用性能也各有所长。近年来,学者们采用创新性的试验方法对卷边C形截面不锈钢构件的屈曲性能进行了试验研究。此外,通过大量的数值模拟,识别了影响构件屈曲模态和承载力的关键因素,并在此基础上对截面进行了优化分析。随着直接强度法的推广,适用于卷边C形截面不锈钢构件不同屈曲模态承载力的快速计算方法也应运而生。阐述了卷边C形截面不锈钢构件的生产工艺及其在工程中的应用,并对国内外学者在卷边C形截面不锈钢构件屈曲性能研究方面的成果进行了详尽的综述,包括屈曲模态判别方法、试验装置介绍以及构件设计方法等方面。
  • [1] 中国工程建设标准化协会.不锈钢结构技术规程:CECS 410:2015[S].北京:中国计划出版社, 2015.
    [2] 郁竑,高欣建,俞继前,等.冷弯型钢在轻钢结构中的应用[J].建筑技术, 1997, 28(2):89-91.
    [3] 何保康,李风,丁国良.冷弯型钢在房屋建筑中的应用与发展[J].焊管, 2002, 25(5):8-11

    ,61.
    [4] 刘占科.薄壁受压构件的畸变屈曲理论与试验研究[D].兰州:兰州大学, 2015.
    [5] Adany S, Schafer B W. Buckling mode decomposition of single-branched open cross-section members via finite strip method:derivation[J]. Thin-Walled Structures, 2006, 44(5):563-584.
    [6] Adany S, Schafer B W. A full modal decomposition of thin-walled, single-branched open cross-section members via the constrained finite strip method[J]. Journal of Constructional Steel Research, 2008, 64(1):12-29.
    [7] Adany S, Schafer B W. Buckling mode decomposition of single-branched open cross-section members via finite strip method:application and examples[J]. Thin-Walled Structures, 2006, 44(5):585-600.
    [8] Li Z, Schafer B W. Constrained finite strip method for thin-walled members with general end boundary conditions[J]. Journal of Engineering Mechanics, 2013, 139(11):1566-1576.
    [9] 陈美合.多种屈曲模态下卷边C形截面不锈钢柱计算理论研究[D].南京:东南大学, 2021.
    [10] Zhang L L, Tan K H, Zhao O. Local stability of press-braked stainless steel angle and channel sections:testing, numerical modelling and design analysis[J]. Engineering Structures, 2020, 203, 109869.
    [11] Huang L H, Yang W B, Shi T W, et al. Local and distortional interaction buckling of cold-formed thin-walled high strength lipped channel columns[J]. International Journal of Steel Structures, 2021, 21(1):244-259.
    [12] Matsubara G Y, Batista E D, Salles G C. Lipped channel cold-formed steel columns under local-distortional buckling mode interaction[J]. Thin-Walled Structures, 2019, 137:251-170.
    [13] Fan S G, Mo H B, Ding Z X, et al. Research on local buckling capacity of lipped C-section stainless steel beams under weak axis bending[J]. Structures, 2021, 33:3570-3587.
    [14] Wu Y W, Fan S G, Du L, et al. Research on distortional buckling capacity of stainless steel lipped C-section beams[J]. Thin-Walled Structures, 2021, 169, 108453.
    [15] Fan S G, Wu Y W, Du L, et al. Experimental study and numerical simulation analysis of distortional buckling capacity of stainless steel lipped C-section beams[J]. Engineering Structures, 2022, 250, 113428.
    [16] Niu S, Rasmussen K J R, Fan F. Distortional-global interaction buckling of stainless steel C-beams:part I-experimental investigation[J]. Journal of Constructional Steel Research, 2014, 96:127-139.
    [17] Niu S, Rasmussen K J R, Fan F. Local-global interaction buckling of stainless steel I-beams. I:experimental investigation[J]. Journal of Structural Engineering, 2015, 141(8), 04014194.
    [18] Pham N H, Pham C H, Rasmussen K J.R. Global buckling capacity of cold-rolled aluminium alloy channel section beams[J]. Journal of Constructional Steel Research, 2021, 179, 106521.
    [19] 李晨旭.卷边C形截面不锈钢柱局部与畸变相关屈曲研究[D].南京:东南大学, 2021.
    [20] Fan S G, Liu F, Zheng B F, et al. Experimental study on bearing capacity of stainless steel lipped C section stub columns[J]. Thin-Walled Structures, 2014, 83:70-84.
    [21] Li S, Zhang L L, Zhao O. Global buckling and design of hot-rolled stainless steel channel section beam-columns[J]. Thin-Walled Structures, 2022, 170, 108433.
    [22] Rasmussen K J R, Hancock G J. Design of cold-formed stainless steel tubular members. I:columns[J]. Journal of Structural Engineering, 1993, 119(8):2349-2367.
    [23] Liu Y, Young B. Buckling of stainless steel square hollow section compression members[J]. Journal of Constructional Steel Research, 2003, 59(2):165-177.
    [24] Theofanous M, Gardner L. Testing and numerical modelling of lean duplex stainless steel hollow section columns[J]. Engineering Structures, 2009, 31(12):3047-3058.
    [25] Huang Y, Young B. Tests of pin-ended cold-formed lean duplex stainless steel columns[J]. Journal of Constructional Steel Research, 2013, 82:203-215.
    [26] Huang Y, Young B. Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members[J]. Thin-Walled Structures, 2013, 73:216-228.
    [27] 郑宝锋.不锈钢冷弯薄壁型钢轴心受压和受弯构件理论分析与试验研究[D].南京:东南大学, 2010.
    [28] Young B, Hartono W. Compression tests of stainless steel tubular members[J]. Journal of Structural Engineering, 2002, 128(6):754-761.
    [29] Bredenkamp P J, Van Den Berg G J. The lateral torsional buckling strength of cold-formed stainless steel beams[C]//12th International Specialty Conference on Cold-Formed Steel Structures. Missouri:1994.
    [30] Van Der Merwe P, Van Wyk M L, Van Den Berg G J. Lateral torsional buckling strength of doubly symmetric stainless steel beams[C]//10th International Specialty Conference on Cold-Formed Steel Structures. Missouri:1990.
    [31] Bredenkamp P J, Van Den Berg G J. The strength of stainless steel built-up I-section columns[J]. Journal of Constructional Steel Research, 1995,34(2/3):131-144.
    [32] Korvink S A, Van Den Berg G J, Van Der Merwe P. Web crippling of stainless steel cold-formed beams[J]. Journal of Constructional Steel Research, 1995, 34(2/3):225-248.
    [33] American Society of Civil Engineers.Specification for the design of cold-formed stainless steel structural members:ASCE 8-02[S]. Reston:American Society of Civil Engineers, 2002.
    [34] Dundu M, Van Tonder P. Local buckling strength of stainless steel beam webs subjected to a stress gradient[J]. Thin-Walled Structures, 2014, 77:48-55.
    [35] Standards Australia/Standards New Zealand Committee.Cold-formed stainless steel structures:AS/NZS 4673:2001[S]. Sydney:Standards Australia and Standards New Zealand, 2001.
    [36] Zhou F, Young B. Experimental investigation of cold-formed high-strength stainless steel tubular members subjected to combined bending and web crippling[J]. Journal of Structural Engineering, 2007, 133(7):1027-1034.
    [37] Zhou F, Young B. Cold-formed high-strength stainless steel tubular sections subjected to web crippling[J]. Journal of Structural Engineering, 2007, 133(3):368-377.
    [38] Zhou F, Young B. Cold-formed stainless steel sections subjected to web crippling[J]. Journal of Structural Engineering, 2006, 132(1):134-144.
    [39] Kuwamura H. Local buckling of thin-walled stainless steel members[J]. Steel Structures, 2003, 3(3):191-201.
    [40] 陶玥林.基于直接强度法不锈钢卷边C形截面柱承载力研究[D].南京:东南大学, 2015.
    [41] Fan S G, Chen M H, Li S, et al. Stainless steel lipped C-section beams:numerical modelling and development of design rules[J]. Journal of Constructional Steel Research, 2019, 152:29-41.
    [42] Yao Z Y, Rasmussen K J R. Perforated cold-formed steel members in compression I:parametric studies[J]. Journal of Structural Engineering, 2017, 143(5), 04016226.
    [43] Yao Z, Rasmussen K J R. Perforated cold-formed steel members in compression II:design[J]. Journal of Structural Engineering, 2017, 143(5), 04016227.
    [44] Standards Australia/Standards New Zealand Committee.Cold-formed steel structures:AS/NZS 4600:2005[S]. Sydney:Standards Australia and Standards New Zealand, 2005.
    [45] Lecce M, Rasmussen K J R. Distortional buckling of cold-formed stainless steel sections:experimental investigation[J]. Journal of Structural Engineering, 2006, 132(4):497-504.
    [46] Lecce M, Rasmussen K J R. Distortional buckling of cold-formed stainless steel sections:finite-element modeling and design[J]. Journal of Structural Engineering, 2006, 132(4):505-514.
    [47] 张智栋.薄壁不锈钢梁畸变失稳性能研究[D].哈尔滨:哈尔滨工业大学, 2017.
    [48] Fan S G, Tao Y L, Zheng B F, et al. Capacity of stainless steel lipped C-section stub column under axial compression[J]. Journal of Constructional Steel Research, 2014, 103:251-263.
    [49] Chen M H, Fan S G, Tao Y L, et al. Design of the distortional buckling capacity of stainless steel lipped C-section columns[J]. Journal of Constructional Steel Research, 2018, 147:116-131.
    [50] Schafer B W, Grigoriu M, Peköz T. A probabilistic examination of the ultimate strength of cold-formed steel elements[J]. Thin-Walled Structures, 1998, 31(4):271-288.
    [51] Yu C. Distortional buckling of cold-formed steel members in bending[D]. Baltimore:Johns Hopkins University, 2005.
    [52] Moen C D, Schafer B W. Experiments on cold-formed steel columns with holes[J]. Thin-Walled Structures, 2008, 46(10):1164-1182.
    [53] Schafer B W. Review:the direct strength method of cold-formed steel member design[J]. Journal of Constructional Steel Research, 2008, 64(7):766-778.
    [54] Afshan S, Gardner L. The continuous strength method for structural stainless steel design[J]. Thin-Walled Structures, 2013, 68:42-49.
    [55] Gardner L, Nethercot D A. Structural stainless steel design:a new approach[J]. The Structural Engineer, 2004, 82(21):21-28.
    [56] Becque J, Rasmussen K J R. Experimental investigation of local-overall interaction buckling of stainless steel lipped channel columns[J]. Journal of Constructional Steel Research, 2009,65(8/9):1677-1684.
    [57] 朱婷.卷边C形截面不锈钢柱整体与局部相关屈曲承载力研究[D].南京:东南大学, 2020.
    [58] Martins A D, Camotim D, Gonçalves R, et al. GBT-based assessment of the mechanics of distortional-global interaction in thin-walled lipped channel beams[J]. Thin-Walled Structures, 2018, 124:32-47.
    [59] Martins A D, Camotim D, Dinis P B. Distortional-global interaction in lipped channel and zed-section beams:strength, relevance and DSM design[J]. Thin-Walled Structures, 2018, 129:289-308.
    [60] Liang D, Fan S G, Xu T G, et al. Design of press-braked stainless steel C-beams subjected to global-distortional interaction buckling[J]. Structures, 2024, 63, 106341.
    [61] Liang D, Fan S G, Dong D Y, et al. Experimental investigation of global-distortional interaction buckling of stainless steel C-beams[J]. Journal of Constructional Steel Research, 2024, 214, 108472.
    [62] Wu Y W, Fan S G, Wu Q X, et al. Experimental study of local-distortional interaction of press-braked stainless steel lipped channel beams[J]. Engineering Structures, 2023, 280, 115713.
    [63] Liu M J, Wu Y W, Fan S G, et al. Local-distortional interaction buckling of stainless steel lipped C-section beams[J]. Journal of Constructional Steel Research, 2023, 201, 107731.
    [64] Kwon Y B, Hancock G J. Tests of cold-formed channels with local and distortional buckling[J]. Journal of Structural Engineering, 1992, 118(7):1786-1803.
    [65] Yang D, Hancock G J. Compression tests of high strength steel channel columns with interaction between local and distortional buckling[J]. Journal of Structural Engineering, 2004, 130(12):1954-1963.
    [66] Yap D C, Hancock G J. Experimental study of high-strength cold-formed stiffened-web C-sections in compression[J]. Journal of Structural Engineering, 2011, 137(2):162-172.
    [67] Loughlan J, Yidris N, Jones K. The failure of thin-walled lipped channel compression members due to coupled local-distortional interactions and material yielding[J]. Thin-Walled Structures, 2012, 61:14-21.
    [68] Silvestre N, Camotim D, Dinis P B. Post-buckling behaviour and direct strength design of lipped channel columns experiencing local/distortional interaction[J]. Journal of Constructional Steel Research, 2012, 73:12-30.
    [69] Dinis P B, Camotim D. Cold-formed steel columns undergoing local-distortional coupling:behaviour and direct strength prediction against interactive failure[J]. Computers&Structures, 2015, 147:181-208.
    [70] Martins A D, Dinis P B, Camotim D. On the influence of local-distortional interaction in the behaviour and design of cold-formed steel web-stiffened lipped channel columns[J]. Thin-Walled Structures, 2016, 101:181-204.
    [71] Martins A D, Camotim D, Dinis P B. Behaviour and DSM design of stiffened lipped channel columns undergoing local-distortional interaction[J]. Journal of Constructional Steel Research, 2017, 128:99-118.
    [72] Young B, Silvestre N, Camotim D. Cold-formed steel lipped channel columns influenced by localdistortional interaction:strength and DSM design[J]. Journal of structural Engineering, 2013, 139(6):1059-1074.
    [73] Dinis P B, Young B, Camotim D. Local-distortional interaction in cold-formed steel rack-section columns[J]. Thin-Walled Structures, 2014, 81:185-194.
    [74] Martins A D, Camotim D, Dinis P B. Local-distortional interaction in cold-formed steel beams:behaviour, strength and DSM design[J]. Thin-Walled Structures, 2017,119:879-901.
    [75] Chen M T, Young B, Martins A D, et al. Uniformly bent CFS lipped channel beams experiencing local-distortional interaction:experimental investigation[J]. Journal of Constructional Steel Research, 2020,170, 106098.
    [76] Chen M T, Young B, Martins A D, et al. Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending[J]. Thin-Walled Structures, 2021, 161, 107494.
    [77] 张耀春,王海明.冷弯薄壁型钢C形截面构件受弯承载力试验研究[J].建筑结构学报, 2009, 30(3):53-61.
    [78] Dinis P B, Camotim D. Local/distortional/global mode interaction in simply supported cold-formed steel lipped channel columns[J]. International Journal of Structural Stability and Dynamics, 2011, 11(5):877-902.
    [79] Dinis P B, Camotim D, Batista E M, et al. Local/distortional/global mode coupling in fixed lipped channel columns:behaviour and strength[J]. Advanced Steel Construction, 2011, 7(1):113-130.
    [80] Silvestre N, Dinis P B, Camotim D, et al. DSM design of lipped channel columns undergoing local/distortional/global mode interaction[C]//SDSS'Rio 2010 Stability and Ductility of Steel Structures. Rio de Janeiro:2010.
  • 加载中
计量
  • 文章访问数:  26
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-20
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回