Research and Progress on Application of High Performance Steel
-
摘要: 具有高强度、高延性、高韧性、强可焊性、强耐候性、强抗火性等优越材料性能的高性能结构钢材,在建筑和桥梁钢结构中具有广阔的应用前景。高效和合理应用高性能结构钢材,可以大幅度节省钢材和防护涂装,降低制作加工和运输安装成本,减少焊接工作量和碳排放,从而降低钢结构的全生命周期运维成本。重点讨论了高强度钢材、超高强度钢材、耐火钢材、耐候钢材等高性能结构钢材的发展现状,总结了国内外现行建筑和桥梁钢结构技术标准体系中对应用高强度钢材的相关规定,并结合工程应用案例分析了690 MPa及以上超高强度钢材的优势,提出了研发超高强度钢材的结构体系、制定相应结构设计和施工技术标准的建议。
从材料层面提高钢结构抗火和耐腐蚀性能是高性能钢材优势的综合体现,还总结了在桥梁钢结构中应用耐候钢和建筑钢结构中应用耐火钢的发展趋势,创新提出了构建"耐火钢+混凝土+膨胀薄涂料"多重(SCI)抗火结构体系的钢结构防火设计新理念,为实现免防火涂装或少防火涂装的耐火钢结构体系提供了新的途径,建议了耐火钢SCI结构体系的火灾安全评价方法。
在建筑和桥梁结构体系中应用高性能钢材是钢结构行业的发展方向,是实现全生命周期绿色低碳、安全适用的高性能钢结构体系推广应用的关键举措,同时应研发配套的焊接和螺栓材料、制作安装工艺、设计和应用技术标准,助力实现高质量发展战略目标。-
关键词:
- 高性能钢材 /
- 高强度和超高强度结构钢材 /
- 耐火钢和耐候钢 /
- 钢结构抗火体系
Abstract: High performance structural steel with superior material properties such as high strength, high ductility, high toughness, better weldability, improved weather resistance and fire resistance, has been widely applied in building and bridge steel structures. Efficient and rational application of high-performance structural steel can significantly save steel and protective coatings, reduce production, transportation, and installation costs, decrease welding workload and carbon emissions. Further reducing the full life cycle operation and maintenance costs of steel structures. This paper focuses on the development and progress of high-performance structural steels such as high-strength steel, ultra-high strength steel, fire-resistant steel, and weathering steel. This paper reviews the relevant regulations on the application of high-strength steel in the current technical standard system of building and bridge steel structures, and analyzes the advantages of ultra-high strength steel grade of 690 MPa and above through engineering application cases.
Recommendations are proposed for the research and development of structural systems using ultra-high strength steel, and drafting relevant structural design and construction standards.The advantages of high-performance steel can be further demonstrated in improving the fire and corrosion resistance of steel structures from the material level. The development trend of using weathering steel in bridge steel structures and fire-resistant steel in building steel structures is summarized. An innovative concept of steel structure using fire-resistant steel to form a "fire-resistant Steel + Concrete + Intumescent coating" (SCI) structural systems is proposed. The steel structural system without or with less fire-resistant coating can be realized, and the fire safety evaluation method of SCI structural system is suggested.
The use of green and low-carbon high-performance steel to construct building and bridge structural systems is the new direction and advancement of the steel structure. Meanwhile the welding and bolt materials, as well as design fabricating and installation standards have been developed to promote the application of high-performance steel structure systems and contribute to the achievement of the national "dual carbon" strategic goals. -
[1] Bjorhovde R. Development and use of high performance steel[J]. Journal of Constructional Steel, 2004, 60: 393-400. [2] Shi G, Hu F X, Shi Y J. Recent research advances of high strength steel structures and codification of design specification in China[J]. International Journal of Steel Structures, 2014, 14(4): 873-887. [3] 石永久, 余香林, 班慧勇, 等. 高性能结构钢材与钢结构体系研究与应用[J]. 建筑结构, 2021, 51(17): 145-151. [4] Chung K F, Hu Y F, Xiao M, et al. Structural behavior of welded H-sections made of high-strength S690 steel plates and their applications in construction[G/OL]//Analysis and Design of Plated Structures. 2nd Ed. 2022: 539-591[2021-10-01]. https://doi.org/10.1016/B978-0-12-823570-6.00001-X. [5] Wang Z. Double-arch steel bridge for Cross Bay Link erected[N/OL]. [2021-02-26].https://www.chinadailyhk.com/hk/article/158935. [6] BSI. Eurocode 3-design of steel structures part 1-1: general rules and rules for buildings: BS EN 1993-1-1∶2022[S]. London: British Standards Institution, 2023. [7] Kuhlmann U, Schmidt-Rasche C, Jorg F, et al. Update on the revision of Eurocode 3[J]. Steel Construction, 2021, 14 (1): 2-13. [8] BSI. Hot rolled products of structural steel part 6: technical delivery conditions for flat products of high yield strength structural steels in the quenched and tempered condition: BS EN 10025-6∶2019[S]. London: British Standards Institution, 2019. [9] Chung K F. Effective use of high strength S690 to S960 steel in construction[J]. Hong Kong Engineer, 2022, 50: 8-18. [10] Collin P, Johansson B. Bridges in high strength steel[J]. IABSE Symposium Report, 2006, 92(4): 1-9. [11] ASTM International. Standard guide for estimating the atmospheric corrosion resistance of low alloy steels: G101-04[S]. West Conshohocken: ASTM International, 2020. [12] 王春生, 张静雯, 段兰, 等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. [13] BSI. Hot rolled products of structural steel part 5: technical delivery conditions for structural steels with improved atmospheric corrosion resistance:BS EN 10025-5∶2019 [S]. London: British Standards Institution, 2019. [14] ASTM International. Standard specification for structural steel for bridges:A709/A709M-21[S]. West Conshohocken: ASTM International, 2021. [15] Jennifer M, Harry W Shenton III, Dennis R, et al. National review on use and performance of uncoated weathering steel highway bridges[J]. Journal of Bridge Engineering, ASCE, 2014, 19(5), 04014009. [16] 谢燚, 杨学军, 王远锋. 高强度螺栓在拉林铁路藏木雅鲁藏布江大桥上的应用[J]. 铁道建筑, 2018, 58(12): 54-56. [17] 蒋周, 胡毅, 王晓科, 等. 冬奥会高山滑雪耐候钢焊接工艺应用[J]. 山西建筑, 2021, 47(16): 60-61. [18] 鲁俊辉, 郭维维, 黄惠, 等. 超级耐候钢在光伏支架上的应用[J]. 科技与创新, 2024(11): 179-181. [19] Sakumoto Y, Yamagyuchi T, Ohashi M, et al. High-temperature properties of fire-resistant steel for buildings[J]. Journal of Structural Engineering, ASCE, 1992, 118(2): 393-407. [20] ASTM International. Standard specification for structural steel with improved yield strength at high temperature for use in buildings: A1077/A1077M-21[S]. West Conshohocken: ASTM International, 2021. [21] Sakumoto Y, Keira K, Furmura F, et al. Tests of fire-resistant bolts and joints[J]. Journal of Structural Engineering, ASCE, 1993, 119(11): 3131-3150. [22] BSI. Eurocode 1-action on structures part 1-2: action on structures exposed to fire:BS EN 1991-1-2∶2024[S]. London: British Standards Institution, 2024. [23] 王文昊, 余香林, 程赟, 等. 耐火耐候钢·混凝土组合梁抗火性能试验研究[J]. 建筑结构, 2023, 53(12): 1-6. [24] BSI. Eurocode 3-design of steel structures part 1-2: structural fire design: BS EN 1993-1-2∶2024[S]. London: British Standards Institution, 2024. [25] 袁继恒, 李忠波, 杨东, 等. Q460GJEZ35抗震耐蚀耐火特厚钢板的研发[J]. 钢结构(中英文), 2021, 36(3): 39-45. [26] 何文涛, 刘楚涵, 王明, 等. 460FRW抗震耐蚀耐火钢材料性能及抗力分项系数研究[J]. 钢结构(中英文), 2021, 36(3): 22-27. [27] 王志明, 吕尚霖, 王鑫, 等. 建筑结构用抗震耐蚀耐火钢Q460FRW低温冲击韧性性能分析[J]. 钢结构(中英文), 2021, 36(3): 28-33. [28] 王垒, 刘中华, 张伟, 等. SQ460FRW抗震耐蚀耐火钢气保焊焊接技术[J]. 电焊机, 2020, 50(5): 27-31.
点击查看大图
计量
- 文章访问数: 86
- HTML全文浏览量: 12
- PDF下载量: 8
- 被引次数: 0