BIM-Based Simulation and Implementation of Construction Schemes for Long-Span Steel Corridors
-
摘要: 钢结构连廊常用来连通两栋单体建筑,实现建筑功能最大化的利用,也是项目管理的重难点环节。尤其对于高空大跨度的钢结构连廊施工,其施工环境最复杂,需考虑各施工环节和工况,因此风险等级通常较高。哈尔滨工业大学郑州研究院数研产业一号园项目设计采用了高空大跨度钢结构连廊的结构形式,最大钢结构连廊跨度50.4 m,高度49.5 m,主梁轴线宽度为20.5 m,质量约1200 t。根据钢结构连廊结构形式、现场施工条件以及国内外已有的钢结构吊装技术,提出了3种施工方案。方案1:采用高空散装法。利用现场塔吊和汽车吊,支设大量的支撑架体,按照施工顺序完成高空拼装作业。方案2:采用分块吊装法,钢结构连廊先按照起重设备性能,拆解成吊装单元模块,现场支设少量的支撑架体,按照合理的施工顺序分块吊装,形成整体连廊结构。方案3:液压整体提升法,现场不支设支撑架体,在钢结构连廊投影地面,将钢连廊整体拼装完成,并进行验收,利用液压提升装置将钢结构连廊整体提升至设计标高。综合考虑3个方案整体的工期计划、措施成本、质量要求、安全性能以及其他主体施工的影响范围,确定采用方案3。通过方案措施费计算,方案3因不需要支设支撑架体,费用最小。采用MIDAS/Gen有限元对施工工况进行组合计算,方案3在安装过程中钢结构连廊的竖向位移和构件应力比也在规范允许值范围内,可以满足现场施工条件下连廊的整体稳定性和精度控制要求。利用ANSYS对液压提升吊具节点进行仿真分析,提升吊具应力小于材料的屈服强度,符合提升要求。同时为了满足钢结构危大方案的施工,利用BIM技术的可视化表达,对施工工况进行模拟预演,筛查安装工况下的施工风险控制要素,进行施工重点管控,多角度证明了方案3的经济性和安全性。为确保钢结构连廊施工过程中的安全性,施工部署多项措施,对应力比较大部位进行临时加固措施,液压提升期间利用无人机对高空作业实时监测,采用风速测量仪监测风速。利用BIM技术结合有限元对施工工况的仿真分析,达到施工速度快、安装精度高、安全风险低的效果。Abstract: Steel structure link corridors are frequently used to connect two separate buildings, achieving maximized utilization of building functions. However, their construction poses significant challenges in project management. For the construction of high-altitude long-span steel structure link corridors in particular, the construction environment is the most complex, requiring consideration of various construction phases and conditions, thus typically presenting a higher risk level. The No.1 Industry Park Project of the Zhengzhou Research Institute of Harbin Institute of Technology adopted the structural form of a high-altitude long-span steel structure link corridor. The steel structure link corridor has a maximum span of 50.400 meters, a height of 49.500 meters, and a width(measured along the main beam axis) of 20.5 meters, with an approximate mass of 1200 tons. Based on the structural form of the steel structure link corridor and the on-site construction conditions, three construction schemes were proposed using existing domestic and international steel structure lifting techniques. Scheme 1 involves the high-altitude assembly method, utilizing on-site tower cranes and mobile cranes to erect numerous supporting structures and complete the high-altitude assembly work in accordance with the construction sequence. Scheme 2 adopts a sectional lifting method, where the steel structure link corridor is first disassembled into modular lifting units based on the performance of lifting equipment. A limited number of supporting structures are erected on-site, and the sections are lifted in a logical sequence to form an overall corridor structure. Scheme 3 employs hydraulic overall lifting technology, where no supporting structures are erected on-site. The entire steel corridor is assembled on the ground within the projection area of the steel structure link corridor, inspected, and then lifted to the designed elevation using hydraulic lifting devices. Considering the overall schedule, measure costs, quality requirements, safety performance, and the impact on other main construction activities, it was decided to adopt Scheme 3, the hydraulic overall lifting scheme.By calculating the measure costs, Scheme 3 incurred the least cost as it does not require the erection of supporting structures. Finite element analysis with MIDAS/Gen confirmed that during the installation process, both the vertical displacement and component stress of the steel structure link corridor under Scheme 3 remained within the permissible range as per regulations, meeting the overall stability and precision control requirements of the corridor under on-site construction conditions. ANSYS simulation analysis of the hydraulic lifting fixture nodes showed that the stress on the lifting fixtures was below the yield strength of the material, meeting the lifting requirements. In addition, to meet the construction requirements of the hazardous major project involving steel structures, the visualization capabilities of BIM technology were utilized to simulate and rehearse construction scenarios, identify key elements for risk control during installation, and focuse on critical construction management points. This multi-angle verification demonstratesd the economic viability and safety of Scheme 3. To ensure safety during the construction of the steel structure link corridor, multiple measures were implemented, including temporary reinforcement in high-stress areas. Real-time monitoring of high-altitude operations was conducted using drones during hydraulic lifting, and wind speed measurement instruments were used to monitor wind speeds. By integrating finite element simulation analysis with BIM technology for construction scenarios, a rapid construction speed, high installation accuracy, and low safety risks were achieved.
-
[1] 樊华君,陈胜伟,刘国普. 大跨度千吨桁架液压整体提升工法[J]. 建筑技术,2011,42(5):446-450. [2] 乌建中,卞永明,徐明谦. 东方明珠广播电视塔钢天线桅杆同步整体提升[J]. 同济大学学报(自然科学版),1996,24(1):44-49. [3] 郭彦林,邓科,王宏,等. 广州新白云国际机场维修机库钢屋盖整体提升技术[J]. 工业建筑,2004,34(12):6-11. [4] 鲍广鉴,陈柏全,曾强. 空间钢结构计算机控制液压整体提升技[J]. 施工技术,2005,34(10):5-7. [5] 王晨,刘驰,葛文杰. 某大跨度钢连廊液压同步提升施工技术[J]. 施工技术,2023,52(14):35-39. [6] Brian M,Brendon M,Wijaya W. The sands sky park[J]. The Arup Journal,2012(1):24-30. [7] Safdie M. Case study:Marina Bay Sands,Singapore[J]. CTBUH Journal,2011(1):12-17. [8] 佟克龙. 高层塔楼超大跨度高空间连体钢结构设计与施工关键技术[J]. 施工技术,2023,52(8):45-50. [9] 袁浩,胡文明,黄昌标,等. 埃及中央商务区项目大跨钢连廊施工方案研究与实施[J]. 钢结构(中英文),2023,38(11):28-34. [10] 张宝燕,邢继斌,肖能文,等. 大跨度钢桁架提升及高空散拼组合施工技术[J]. 施工技术,2018,47(增刊1):394-396. [11] 张希黔. 创新技术在建筑施工中的应用(8)[J]. 施工技术,2009,38(5):119-120. [12] 于国友,潘云锋. 混凝土圆形骨料周边应力集中系数的解析法[J]. 力学与实践,2016,38(6):636-640. [13] 周健,陈锴. 利用施工过程调整内力分布的设计方法在武汉中心的应用[J]. 建筑结构,2016,46(24):27-31. [14] 陈斌,汪京辉,龙海涛. 基于ABC分类管理法的高支模体系施工风险分析与防控[J]. 建筑安全,2022,37(10):53-56. [15] 陈如银. 无人机技术在大型工程施工管理中的应用分析[J]. 中国设备工程,2023(18):30-33. [16] 杨思晟,魏玉高,凌祥. 焊接结构拉伸强度及蠕变性能的小冲孔评价研究进展[J]. 南京工业大学学报(自然科学版),2023,45(5):490-496. -
点击查看大图
计量
- 文章访问数: 87
- HTML全文浏览量: 24
- PDF下载量: 11
- 被引次数: 0



登录
注册
下载: