Development of Intelligent Manufacturing Technology for Steel Structures
-
摘要: 智能建造是我国当前建筑业转型升级的主要方向,主要是将建筑工业化与人工智能等新一代信息技术相融合,提高建筑业的效率、效益和品质,降低人力投入。建筑工业化的重要特征就是将建筑的构部件在工厂预制,然后到现场用机械设备进行安装。因此,构部件在工厂内的制造,是建筑工业化的核心环节之一;要实现智能建造,就需要实现构部件的智能制造。智能制造在制造业中已发展多年且技术日渐成熟,而智能建造在建筑业中尚处于探索阶段;因此,借鉴制造业的发展成果,在建筑构部件的生产环节引入智能制造技术,是当前我国发展智能建造的重要方向。钢结构制造是建筑业中最适于发展智能制造技术的产业之一,钢构件的工厂制造目前已经处于机械化、自动化和数字化深度融合的阶段,并正在与人工智能、物联网和机器人等新一代信息技术结合,逐步向智能制造方向发展。对钢结构的传统制造技术及其与新一代信息技术的融合进行了介绍,并对钢结构智能制造技术的发展进行了展望,以期对我国钢结构智能制造的发展提供参考。Abstract: Intelligent construction is the main direction for the transformation and upgrading of the current construction industry. It primarily integrates building industrialization with new-generation information techniques, such as artificial intelligence (AI) and industry manufacturing, to improve the efficiency, benefits, and quality of the construction industry while reducing labor costs. An important feature of building industrialization is that building components are prefabricated in factories and then installed on-site using mechanical equipment. Therefore, the manufacturing of components in factories is a core aspect of building industrialization. To achieve intelligent construction, it is essential to realize the intelligent manufacturing of components. Intelligent manufacturing has been developed in the manufacturing industry for many years, and the technology is becoming increasingly mature, whereas intelligent construction is still in the exploratory stage within the construction industry. Therefore, considering the achievements and introducing intelligent technology of the manufacturing industry into the production of building components is a key direction for the development of intelligent construction. The manufacturing of steel structures is one of the construction sectors most suited for the development of intelligent manufacturing technology. The industry production of steel components is currently in a phase of deep integration of mechanization, automation, and digitalization. It is being combined with new-generation information techniques such as AI, the Internet of Things, and robotics, and is gradually evolving toward intelligent manufacturing. This paper introduces the traditional manufacturing technology of steel structures and its integration with new-generation information technology. The future development of intelligent manufacturing technology for steel structures is also explored, aiming to provide a reference for the advancement of intelligent manufacturing in the steel structure industry.
-
[1] 工业与信息化部. "十四五"智能制造发展规划[EB/OL]. (2021-12-28)[2024-10-14].http://big5.www.gov.cn/gate/big5/www.gov.cn/zhengce/zhengceku/2021-12/28/5664996/files/a22270cdb0504e518a7630fa318dbcd8.pdf. [2] Orlowski K. Automated manufacturing for timber-based panelised wall systems[J]. Automation in Construction, 2020, 109, 102988. [3] Xu C, Zhou X, Lin X, et al. Automated optimization for steel mold of precast components based on multi-objective evolutionary algorithm[J]. Journal of Constructional Steel Research, 2024, 221, 108914. [4] Yang L, Liu Y, Peng J, et al. A novel system for off-line 3D seam extraction and path planning based on point cloud segmentation for arc welding robot[J]. Robotics and Computer Integrated Manufacturing, 2020, 64, 101929. [5] Liu J, Jiao T, Li S, et al. Automatic seam detection of welding robots using deep learning[J]. Automation in Construction, 2022, 143,104582. [6] Fu L, Xing Z, Cheng G, et al. Terrestrial laser scanning assisted dimensional quality assessment for space frame components[J]. Measurement, 2022,204,112067. [7] Gao H, Sun Y, Peng Y. A 3D point cloud model-based inspection method for the dimension of prefabricated steel members[C]//International Symposium on Automation, Mechanical and Design Engineering. Cham: Springer Nature Switzerland. Beijing: 2022: 53-68. [8] 张雪健,毛业兵,杨芳,等.基于机器视觉的五轴坡口切割机器人控制系统设计[J]. 焊接, 2021(2): 14-20, 37. [9] 王成军, 严晨.机器视觉技术在分拣系统中的应用研究综述[J].制造技术与机床, 2020(5): 32-37. 期刊类型引用(12)
1. 唐召军. 建筑结构用高强度钢材力学性能检测分析. 城市建设理论研究(电子版). 2025(08): 193-195 . 百度学术
2. 路殿成,樊明驰,陈诗颖,吴成龙,袁维振,张纪刚. 新型装配式型钢混凝土组合节点非线性分析. 混凝土. 2024(07): 178-185 . 百度学术
3. 杨志军,王彦博,杨国涛. Q690D钢材箱形截面框架柱抗震性能. 湖南大学学报(自然科学版). 2023(09): 69-78 . 百度学术
4. 张庆素,陈振业,陈波,齐建军,胡晓波,冯伟. Q690抗震耐蚀钢埋弧焊熔敷金属性能研究. 电焊机. 2022(03): 105-110 . 百度学术
5. 张龙龙. 高强度结构钢4130品种开发. 冶金与材料. 2022(02): 128-129+132 . 百度学术
6. 李海锋,洪依萍,骆杰鑫,陈赛剑,舒智. 内嵌耗能壳板高强钢圆钢管桥墩抗震性能. 中国矿业大学学报. 2022(04): 769-778 . 百度学术
7. 池海涛,刘馥兵,胡晓光. 7A41铝合金的力学性能和耐蚀性能. 金属热处理. 2022(08): 88-94 . 百度学术
8. 孙国亭. 高强度钢材钢结构研究进展. 冶金与材料. 2022(04): 42-43+46 . 百度学术
9. 张海龙,赵雪航,李海锋. 开孔高强钢板材料力学性能的试验研究. 工业建筑. 2021(01): 157-162+199 . 百度学术
10. 周云开,闫健,麦琦坚,黄学良. 工字钢梁抗弯实验教学探索与实践. 山西建筑. 2021(18): 188-190+195 . 百度学术
11. 葛建舟,黄学伟,赵军,赵威,魏晨晨. Q690D高强钢基于循环微孔扩展模型的断裂预测分析. 钢结构(中英文). 2021(07): 18-28 . 本站查看
12. 张龙龙. Q420矩形坯角横裂原因分析及控制措施. 中国金属通报. 2021(12): 136-138 . 百度学术
其他类型引用(17)
-

计量
- 文章访问数: 465
- HTML全文浏览量: 44
- PDF下载量: 29
- 被引次数: 29