Experimental Investigation on Mechanical Properties of Fire-Resistant Steel Q235FRB at Elevated Temperature
-
摘要: 为了研究耐火钢在高温环境下的力学性能,采用高温稳态试验方法进行耐火钢Q235FRB标准件的拉伸试验。基于试验结果,得到了不同温度条件下耐火钢Q235FRB的应力-应变曲线,据此给出了高温下耐火钢各项力学性能参数指标(包括弹性模量、屈服强度、抗拉强度)的折减系数。研究结果表明,耐火钢Q235FRB的强度指标(包括弹性模量、屈服强度、抗拉强度)与温度基本呈负相关关系,并提出了对应计算模型。当温度达到400℃时,强度指标劣化速率加快,温度升至800℃时,强度指标基本为常温性能的10%。耐火钢Q235FRB的变形指标(极限伸长率)基本随着温度的升高呈先减小后增大的趋势。通过对比分析,耐火钢Q235FRB的力学性能和耐高温性能优于同等级普通钢,具有广泛应用前景。
-
关键词:
- 耐火钢Q235FRB /
- 高温环境 /
- 试验研究 /
- 力学性能
Abstract: To investigate the mechanical properties of fire-resistant steel under elevated-temperature conditions, a steady-state method was used to conduct tensile experiments on standard specimens of fire-resistant steel Q235FRB. Based on the experimental results, stress-strain curves of fire-resistant steel Q235FRB under different temperature conditions were obtained, from which reduction factors for various mechanical performance parameters of fire-resistant steel (including elastic modulus, yield strength, and tensile strength) at elevated temperatures were obtained. The research results indicate that the strength parameters of fire-resistant steel Q235FRB (including elastic modulus, yield strength, and tensile strength) exhibit a negative correlation with temperature, and corresponding calculation models are proposed. When the temperature reaches 400 ℃, the degradation rate of strength parameters accelerates, with strength parameters reaching approximately 10% of room-temperature performance when the temperature rises to 800 ℃. The deformation parameter (ultimate elongation) of fire-resistant steel Q235FRB decreases first and then increases with the increase of temperature. Through comparative analysis, it is demonstrated that the mechanical and high-temperature resistance properties of fire-resistant steel Q235FRB surpass those of equivalent-grade ordinary steel, show casing promising application prospects. -
[1] 余香林,石永久,彭耀光,等.新型耐火耐候钢材高温力学性能与本构模型研究[J].工程力学,2023,40(3):201-212. [2] 张泽宇,李红旭,赵国川,等.耐火钢结构应用研究现状与发展趋势[C]//2022年工业建筑学术交流会论文集(下册).北京:2022. [3] 李红旭.耐火钢材料不同温度下力学性能研究[D].石家庄:河北科技大学,2020. [4] Qiang X H, Jiang X, Bijlaard F, et al. Mechanical properties and design recommendations of very high strength steel S960 in fire[J]. Engineering Structures, 2016, 112: 60-70. [5] Ranawaka T, Mahendran M. Experimental study of the mechanical properties of light gauge cold-formed steels at elevated temperatures[J]. Fire Safety Journal, 2019, 44 (2): 219-229. [6] Kankanamge N D, Mahendran M. Mechanical properties of cold-formed steels at elevated temperatures[J]. Thin-Walled Structures, 2017, 49 (1): 26-44. [7] Choi I R, Chung K S, Kim D H. Thermal and mechanical properties of high-strength structural steel HSA800 at elevated temperatures[J]. Materials & Design, 2016, 63: 544-551. [8] Chiew S P, Zhao M S, Lee C K. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions[J]. Journal of Constructional Steel Research, 2015, 98: 12-19. [9] 刘兵, 王卫永, 李国强, 等. 高强度Q460钢柱抗火性能研究[J]. 土木工程学报, 2012, 45(9): 19-26. [10] 李国强,黄雷,张超.国产Q690高强钢高温下力学性能试验研究[J].建筑结构学报,2020,41(2):149-156. [11] 范圣刚,刘平,石可,等.高温下与高温后Q550D高强钢材料力学性能试验[J].天津大学学报(自然科学与工程技术版),2019,52(7):680-689. [12] 陈伟, 叶继红. G550高强度冷成型钢高温力学性能稳态试验研究[J]. 土木工程学报, 2012, 45(6): 33-42. [13] Zhang C T, Liu Y F, Huang C L. Fatigue performance of Q345 structural steel after natural cooling from elevated temperatures[J]. Journal of Constructional Steel Research,2021, 184, 106811. [14] 蒋首超,陆立新,李国强,等.马钢耐火钢高温下材料性能试验研究[J].土木工程学报,2006(8):72-75. [15] 楼国彪,费楚妮,王彦博,等.高强度耐火钢高温下力学性能试验研究[J].建筑结构学报,2022,43(9):128-137. [16] Chen J, Young B, Uy B. Behavior of high strength structural steel at elevated temperatures[J]. Journal of Structural Engineering, 2016, 7 (3): 331-363. [17] 中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分: 室温试验方法:GB/T 228.1—2021[S].北京: 中国标准出版社, 2021. [18] 全国钢标准化技术委员会. 金属材料 高温拉伸试验方法: GB/T 4338—2006[S]. 北京: 中国标准出版社, 2006. [19] 阮诗鹏,赵金城,宋振森,等.蔓延火灾下钢框架结构抗火性能试验研究[J].建筑结构学报,2022,43(9):103-114. [20] Nadjai A, Naveed A, Charlier M, et al. Large scale fire test: the development of a travelling fire in open ventilation conditions and its influence on the surrounding steel structure[J]. Fire Safety Journal, 2022, 130, 103575. [21] 强旭红,毋凯冬,姜旭,等.高强钢S460高温力学性能研究与抗火设计建议[J].湖南大学学报(自然科学版),2018,45(11):37-45. [22] 李国强, 陈凯, 蒋首超, 等. 高温下Q345钢的材料性能试验研究[J]. 建筑结构, 2001, 31(1): 53-55. [23] 赵金城. 高温下钢材力学性能的试验研究[J].建筑结构,2000,30(4):26-28. [24] 全国钢标准化技术委员会. 耐火结构用钢板及钢带: GB/T 28415—2012[S]. 北京: 中国标准出版社, 2012. 期刊类型引用(10)
1. 郑尚敏,管冲. 波形钢腹板-钢底板组合箱梁耐火性能及影响因素. 公路交通科技. 2024(03): 94-101 . 百度学术
2. 杨世俊,周焕廷,许万东. 波纹腹板预应力U型钢-混凝土组合梁高温性能参数研究. 武汉理工大学学报. 2024(07): 52-59 . 百度学术
3. 周焕廷,梁中政. 负弯矩区钢梁局部增强的连续组合梁抗火性能参数分析. 武汉理工大学学报(交通科学与工程版). 2023(03): 492-498+504 . 百度学术
4. 张鑫,李汝凯,杨立华,吕俊利. 铰接约束圆孔蜂窝组合梁抗火性能试验研究与数值模拟. 建筑结构. 2023(19): 76-83 . 百度学术
5. 沈强,郑尚敏,程海根,沈磊,唐维胜,魏岑茜. 波形钢腹板PC组合简支箱梁抗火性能与设计. 建筑钢结构进展. 2023(10): 46-53 . 百度学术
6. 周焕廷,王峥峥,张苏鹏,秦晗,伍先兴,陈志华. 手风琴效应对预应力波纹腹板钢-混凝土组合梁抗火性能影响研究. 建筑结构学报. 2022(08): 174-184+208 . 百度学术
7. 周焕廷,陈祥,伍先兴. 预应力波纹腹板开孔钢-混凝土组合梁抗火性能参数分析. 建筑钢结构进展. 2022(06): 73-84 . 百度学术
8. 周焕廷,伍先兴,陈志华,李坚. 波纹腹板开孔对预应力钢-混凝土组合梁抗火性能影响研究. 中国公路学报. 2022(06): 122-134 . 百度学术
9. 张琦,毛小勇. 波纹钢腹板-混凝土组合梁抗火性能研究. 江苏建筑. 2022(04): 27-31 . 百度学术
10. 周焕廷,邹有云,伍先兴,缪江峰. 端部约束型腹板开孔预应力波纹钢-混凝土组合梁抗火性能. 建筑钢结构进展. 2022(10): 68-79 . 百度学术
其他类型引用(6)
-

计量
- 文章访问数: 74
- HTML全文浏览量: 14
- PDF下载量: 10
- 被引次数: 16