Refined Finite Element Analysis Study of Disassembled Modular Steel Containerized Barrack Housing Structures
-
摘要: 为提升现有拆装式模块化箱式钢结构的力学性能和拓展其在营房建筑中的应用,基于传统模块化钢结构箱式房体系发展了一套适用于高速安拆、组合更灵活和兼顾地板保温的箱式营房结构体系。该结构体系由等边立柱、薄壁开口框架顶梁和底梁(局部加强)、等边角件、带保温的地板系统和可调节高度的基础等构成。新结构体系必然带来力学性能(极限承载力和刚度)的变化,如何准确计算结构响应至关重要。结合拆装式模块化箱式房屋的构成特点,通过对结构非线性分析,建立了单箱体系和多层箱结构体系的杆系模型、壳单元模型和多尺度模型三种有限元分析模型,深入分析了单箱和多层箱结构构件的内力和变形响应结果,量化了杆系模型(刚接、铰接)与壳单元模型(半刚性)相关计算假定导致的结果差异,揭示了主次梁相互作用机制和整体结构构成导致的传力机制,最终明确了拆装式模块化箱式房屋结构的有限元分析模型和精细化分析方法,并提出了更加合理的主次梁焊接方式。有限元对比分析表明:采用杆系模型的计算效率较高,但主要受力构件计算结果精度低,远达不到要求;杆系模型在计算分析时构件自动引入平截面假定,计算变形结果无法反映薄壁开口截面弯扭屈曲对变形的贡献,无法反映主次梁相互作用,特别是预测楼盖刚度与变形时不建议采用杆系模型和多尺度模型进行分析;在“恒载+风载”工况下,多尺度模型与壳单元模型的结构侧向位移偏差较小,故可采用多尺度模型进行分析;多层箱体分析虽可采用铰接-杆系模型进行分析,但计算结果偏保守:水平荷载作用下,变形基本存在30%的偏差;竖向荷载作用下,内力存在50%以上的偏差。故多层箱体结构分析不建议采用刚接-杆系模型,其计算结果与壳单元模型相比偏不安全且偏差较大。Abstract: To enhance the mechanical properties of existing disassembled modular containerized structures and expand their application in barracks construction, a new structural system for containerized barracks has been developed based on traditional modular steel structure containerized house systems. This system is designed to be suitable for high-speed assembly and disassembly, offering greater flexibility in combination and ensuring floor insulation. The structural system comprises equilateral columns, thin-walled open-section beams, equilateral corner pieces, insulated floor systems, and foundations with adjustable heights. The introduction of this new structural system inevitably leads to changes in mechanical properties, making accurate calculation of structural responses is crucial. Based on the characteristics of disassembled modular container houses, this study employeds nonlinear structural analysis to establish three finite element models: beam element models, shell element models, and multiscale models for single and multi-story containerized units. It thoroughly analyzed the internal forces and deformation responses of components in single and multi-story units, quantified the differences in results caused by assumptions related to beam element models (rigid joints, pin joints) and shell element models (semi-rigidity), and revealed the load transfer mechanisms resulting from interaction of main-secondary beams and structural configuration. Finally, it clarified the finite element models and refined analysis methods for containerized modular houses, providing valuable references for welding details between main and secondary beams for engineering design.Finite element comparative analysis showed that using beam element model hasd higher computational efficiency, but with lower accuracy of capacity and deformation which fell far short of requirements. The beam element model introduced the plane cross-section assumption automatically during analysis. Deformation results of such model could not reflect the contribution of twisting buckling of cold-formed section to deformation, nor could they reflect the interaction between main and secondary beams. Especially when predicting floor stiffness and deformation, it was not recommended to use beam element models and multiscale models for analysis. Under the "dead load + wind load" load case, the lateral displacement deviation of the multiscale model and the shell element model were marginal. Therefore, when evaluating the lateral displacement response of the structure, the multiscale model could be used for analysis. Multistory modular structural analysis could be carried out by using a hinged-beam element model for analysis, but the results of the beam element model were conservative: under lateral loading, there was a deviation of approximately 30% in deformation, and under vertical loading, there was a deviation of over 50% in internal forces. It was not recommended to use a rigidly connected-beam element model to analyze multistory modular structures, as the results of the rigidly connected-beam element model were comparably unsafe and with larger deviations compared to shell element models.
-
[1] 毛磊,陆烨,李国强. 集装箱建筑发展历史及应用概述[J]. 建筑钢结构进展,2014,16(5):9- 17. [2] 陈红磊,王彦博,陈琛,等. 某模块化钢结构大学生公寓结构设计[J]. 钢结构(中英文),2019,34(8):46- 49. [3] 丁阳,邓恩峰,宗亮,等. 模块化钢结构建筑连接节点研究进展[J]. 建筑结构学报,2019,40(3):33- 40. [4] Chen Z H,Liu J D,Yu Y Y. Experimental study on interior connections in modular steel buildings[J]. Engineering Structures,2017,147:625- 638. [5] Peng J H,Hou C,Shen L M. Numerical analysis of corner-supported composite modular buildings under wind actions[J]. Journal of Constructional Steel Research,2021,187,106942. [6] 左洋,查晓雄. 开洞集装箱房屋结构纵向刚度分析[J]. 天津大学学报(自然科学与工程技术版),2015,48(2):167- 176. [7] 中华人民共和国住房和城乡建设部. 箱型轻钢结构房屋第1部分:可拆装式:GB/ T 37260.1—2018[S]. 北京:中国标准出版社,2018. [8] 中国建筑金属结构协会. 集成打包箱式房屋:T/CCMSA 20108—2019[S]. 北京:中国建筑工业出版社,2019. [9] 中国工程建设标准化协会. 箱式钢结构集成模块建筑技术规程:T/ CECS 641—2019[S]. 北京:中国计划出版社,2019. [10] 李英磊,马荣奎,李元齐. 集装箱模块化组合房屋单体纵向抗侧刚度及承载力数值分析[J]. 建筑钢结构进展,2014,16(1):3328- 3341. [11] 帅逸群,熊伟,程威. 装配式打包箱式结构抗侧刚度及承载力分析[J]. 建筑结构,2022,52(24):44- 49. [12] 赵俊杰. 可拆装式箱型房屋内节点和整体受力性能研究[D]. 郑州:郑州大学,2021. [13] 张俊峰,杨大雍,胡文悌,等. 拆装式箱式房屋底框受力性能试验研究[J]. 建筑结构,2017,47(10):22- 27. [14] 杨大雍. 拆装式箱型房屋结构受力性能研究[D]. 郑州:郑州大学,2017. [15] 田广丰. 可拆装式箱型房屋半刚性连接节点力学性能研究[D]. 郑州:郑州大学,2019. -
点击查看大图
计量
- 文章访问数: 90
- HTML全文浏览量: 25
- PDF下载量: 9
- 被引次数: 0



登录
注册
下载: