A Review on the Research and Application of Steel-UHPC Composite Beam
-
摘要: 随着工程新材料的突破性发展,高性能材料在土木工程领域的合理应用与结构形式的发展成为钢-混凝土组合梁创新的重要途径。钢-超高性能混凝土(UHPC)组合梁具有优异的受力性能、耐久性能,为我国土木工程结构的创新发展提供了良好途径和解决办法。为了促进中国桥梁工程向轻量化、高性能化、装配化、可持续化、智能化方向的转型升级,本文结合钢-UHPC组合梁的工程应用现状、受力性能、剪力连接件力学行为三个方面的国内外研究与应用现状,对钢-UHPC组合梁的主要研究进展和未来发展方向进行了分析。首先梳理了钢-UHPC组合梁在国内外桥梁建设领域的工程应用现状,从中小跨径简支梁桥和连续梁桥到跨径超千米的悬索桥和斜拉桥等均有钢-UHPC组合梁的身影,分析表明:随着低碳建筑在全球的兴起以及我国“交通强国”战略的提出,钢-UHPC组合梁桥也将迎来巨大的发展机遇。其次总结了钢-UHPC组合梁在正弯矩和负弯矩作用下的受力性能、受弯性能计算理论及有限元模拟方法方面的研究进展,分析表明:钢-UHPC组合梁的应用可显著提升结构的抗裂性能、受弯承载能力及抗弯刚度,有利于降低结构自重、实现装配化施工,促进高性能工程结构的进一步发展。之后分别探讨了普通栓钉抗剪连接件、短栓钉抗剪连接件、大直径抗剪连接件、群钉布置的栓钉抗剪连接件、开孔钢板抗剪连接件以及螺栓抗剪连接件等剪力连接件的研究现状,分析表明:合理地选用和设计剪力连接件可兼顾不同工程背景下钢-UHPC组合梁对界面连接可靠度和UHPC材料高效利用的共同需求。目前国内外对钢-UHPC组合梁的工作机理、受力性能、剪力连接件的研究虽已逐渐开展,但是系统性不足、仍应围绕基本理论、设计方法等开展深入的系统研究,以满足钢-UHPC组合梁大量工程应用需求。最后对钢-UHPC组合梁受力性能研究和设计理论、高强钢-UHPC组合梁研究、新型剪力连接件受力性能研究以及钢-UHPC组合梁智能设计研究面临的关键问题、主要挑战及未来发展趋势进行了展望,以期对中国桥梁工程的学术研究与工程应用的发展方向提供创新思路。Abstract: With the development of novel engineering materials, the rational application of high-performance materials in the field of civil engineering, alongside the evolution of structural forms, has become a significant pathway for innovations in steel-concrete composite beams. Steel-UHPC composite beams exhibit exceptional mechanical and durability properties, offering a promising pathway and solution for the innovative development of civil engineering structures in our country. In order to promote the transformation and upgrading of Chinese bridge engineering towards lightweight, high-performance, prefabricated, sustainable, and intelligent directions, this paper analyses the main research progress and future development directions of steel-UHPC composite beams. This is done by examining the current state of engineering applications, mechanical performance, and the mechanical behaviour of shear connectors from both domestic and international research and applications. Firstly, the paper reviews the current state of engineering applications of steel-UHPC composite beams in the field of bridge construction both domestically and internationally. These applications span from small and medium-span simply supported and continuous beam bridges to suspension and cable-stayed bridges with spans exceeding a thousand meters, showcasing the presence of steel-UHPC composite beams in various types of bridge structures. It indicates that with the rise of low-carbon construction globally and the introduction of China's "Transportation Powerhouse" strategy, steel-UHPC composite beam bridges are poised to encounter significant development opportunities. Secondly, the paper summarises the research progress on the mechanical performance of steel-UHPC composite beams under positive and negative bending moments, including the calculation theories for bending performance and finite element simulation methods. It indicates that the application of steel-UHPC composite beams can significantly enhance the structural crack resistance, flexural capacity, and flexural stiffness. This is beneficial for reducing the self-weight of the structure, facilitating prefabricated construction, and promoting the further development of high-performance engineering structures. Subsequently, the current state of research on various shear connectors was discussed, including conventional stud shear connectors, short stud shear connectors, large diameter shear connectors, grouped stud shear connectors, perforated steel plate shear connectors, and bolt shear connectors. It indicates that the rational selection and design of shear connectors can simultaneously address the dual requirements of interface connection reliability and the efficient utilisation of UHPC materials in steel-UHPC composite beams across various engineering contexts. Although the research on the force transmission mechanism and mechanical performance of steel-UHPC composite beam has been gradually developed, the systematic research is insufficient, and indepth systematic research should still be carried out around the basic theory and design method, so as to meet the needs of a large number of engineering applications. Finally, an outlook is provided on the key issues, main challenges, and future development trends related to the study of the load-bearing performance and design theory of steel-UHPC composite beams, research on high-strength steel-UHPC composite beams, the load-bearing performance of novel shear connectors, and the intelligent design of steel-UHPC composite beams. This is intended to offer innovative insights into the academic research and engineering applications of bridge engineering in China.
-
[1] 聂建国.钢-混凝土组合结构桥梁[M].北京:人民交通出版社, 2011. [2] 聂建国,吕坚锋,樊健生.组合梁桥在中小跨径桥梁中的应用[C]//中国钢结构协会钢-混凝土组合结构分会第十一次学术会议暨钢-混凝土组合结构的新进展交流会论文集.长沙:中国钢结构协会, 2007:663-667. [3] 聂建国.钢-混凝土组合结构原理与实例[M].北京:科学出版社, 2009. [4] 2020年交通运输行业发展统计公报[J].交通财会, 2021(6):92-97. [5] 张喜刚,刘高,马军海,等.中国桥梁技术的现状与展望[J].中国公路, 2017(5):40-45. [6] 徐启智.钢-UHPC组合梁桥新型界面连接构造的试验研究与精细化分析[D].南京:东南大学, 2022. [7] 邵旭东,樊伟,黄政宇.超高性能混凝土在结构中的应用[J].土木工程学报, 2021, 54(1):1-13. [8] 邵旭东,邱明红.基于UHPC材料的高性能装配式桥梁结构研发[J].西安建筑科技大学学报(自然科学版), 2019, 51(2):160-167. [9] Hamoda A, Hossain K M A, Sennah K, et al. Behaviour of composite high performance concrete slab on steel I-beams subjected tostatic hogging moment[J]. Engineering Structures, 2017, 140:51-65. [10] Wang Y, Shao X D, Cao J H, et al. Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs[J]. Engineering Structures,2021, 231,111728. [11] Toutlemonde F, Resplendino J. Designing and building with UHPFRC:State of the art and development[M]. United Kingdom:Wiley, 2011. [12] Xu L K, Yang Y, Zhang Y, et al. Estimation of stress-strain constitutive model for ultra-high performance concrete after high temperature with an deep neural network based method[J]. Construction and Building Materials, 2023, 408,133690. [13] Hao N, Yang Y, Xue Y C, et al. Experimental study on flexuralbehavior of partially precast high-strength steel reinforced ultrahigh performance concrete beam[J]. Engineering Structures,2023, 284, 115999. [14] Hao N, Yang Y, Xue Y C, et al. Shear performance of partiallye ncased composite beams with high-strength steel and UHPC[J].Journal of Constructional Steel Research, 2023, 211, 108217. [15] 郝宁,杨勇,薛亦聪,等.预制装配部分包覆高强型钢-超高性能混凝土组合梁受弯承载力试验研究[J].建筑结构学报,2024, 45(2):95-106. [16] 刘加平,刘建忠,韩方玉,等.基于钢-混凝土组合结构轻量化的粗骨料超高性能混凝土研究进展与应用[J].建筑结构学报, 2022, 43(9):36-44. [17] Shi C J, Wu Z M, Xiao J F, et al. A review on ultra high performance concrete:part I. raw materials and mixture design[J].Construction and Building Materials, 2015, 101:741-751. [18] Hung C C, El-Tawil S, Chao S H. A review of developments andchallenges for UHPC in structural engineering:behavior, analysis,and design[J]. Journal of Structural Engineering, 2021, 147(9), 03121001. [19] Yoo D Y, Lee J H, Yoon Y S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites[J]. Composite Structures, 2013, 106:742-753. [20] Deng W Q, Gu J C, Liu D, et al. Study of single perfobond rib with head stud shear connectors for a composite structure[J].Magazine of Concrete Research, 2019, 71(17):920-934. [21] 聂建国.我国结构工程的未来:高性能结构工程[J].土木工程学报, 2016, 49(9):1-8. [22] 邵旭东,李玉祺,廖子南,等. UHPC华夫桥面板抗弯性能试验及有限元分析[J].长安大学学报, 2018, 38(3):52-63. [23] 2020年中国超高性能混凝土(UHPC)技术与应用发展报告[J].混凝土世界, 2021(4):20-29. [24] 砼心砼德.超高性能混凝土(UHPC)在路桥建设领域的应用[EB/OL].(2024-05-13)[2024-07-26]. https://mp.weixin.qq.com/s/NKLvpa8Od2kHGk4JmG1pvQ. [25] 刘君平,徐帅,陈宝春.钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究[J].工程力学, 2018, 35(11):92-98. [26] 张彦玲,王元清,季文玉.钢-活性粉末混凝土简支组合梁正截面破坏模式[J].铁道科学与工程学报, 2009, 11(6):10-15. [27] Hu Y Q, Meloni M, Cheng Z, et al. Flexural performance ofsteel-UHPC composite beams with shear pockets[J]. Structures,2020, 27:570-582. [28] Yoo S W, Choo J F. Evaluation of the flexural behavior of composite beam with inverted-T steel girder and steel fiber reinforced ultrahigh performance concrete slab[J]. Engineering Structures,2016, 118:1-15. [29] Zhu J S, Wang Y G, Yan J B, et al. Shear behaviour of steel-UHPC composite beams in waffle bridge deck[J]. Composite Structures, 2020, 234, 111678. [30] Liu J P, Lai Z C, Chen B C, et al. Experimental behavior and analysis of steel-laminated concrete (RC and UHPC) compositegirders[J]. Engineering Structures, 2020, 225, 111240. [31] 张彦玲.钢-混凝土组合梁负弯矩区受力性能及开裂控制的试验及理论研究[D].北京:北京交通大学, 2009. [32] 邓舒文,邵旭东,晏班夫,等.全预制快速架设钢-UHPC轻型组合城市桥梁[J].中国公路学报, 2017, 30(3):159-166. [33] 刘新华,周聪,张建仁,等.钢-UHPC组合梁负弯矩区受力性能试验[J].中国公路学报, 2020, 33(5):110-121. [34] Shao X D, Yi D T, Huang Z Y, et al. Basic performance of thecomposite deck system composed of orthotropic steel deck and ultrathin RPC layer[J]. Journal of Bridge Engineering, 2013, 18(5):417-428. [35] Shao X D, Qu W T, Cao J H, et al. Static and fatigue propertiesof the steel-UHPC lightweight composite bridge deck with large Uribs[J]. Journal of Constructional Steel Research, 2018, 148:491-507. [36] Lin W W, Yoda T, Taniguchi N. Application of SFRC in steelconcrete composite beams subjected to hogging moment[J]. Journal of Constructional Steel Research, 2014, 101:175-183. [37] Luo J, Shao X D, Cao J H, et al. Transverse bending behavior of the steel-UHPC lightweight composite deck:orthogonal test and analysis[J]. Journal of Constructional Steel Research, 2019, 162:35-47. [38] Luo J, Shao X D, Fan W, et al. Flexural cracking behavior and crack width predictions of composite (steel+UHPC) lightweightdeck system[J]. Engineering Structures, 2019, 194(1):120-137. [39] Zhang Y, Cai S K, Zhu Y P, et al. Flexural responses of steelUHPC composite beams under hogging moment[J]. Engineering Structures, 2020, 206, 110134. [40] Hamoda A, Hossain K M A, Sennah K, et al. Behaviour of composite high performance concrete slab on steel I-beams subjected to static hogging moment[J]. Engineering Structures, 2017, 140:51-65. [41] Zhao C H, Wang K K, Zhou Q F, et al. Full-scale test and simulation on flexural behavior of dovetail-shaped reactive powder-concrete wet joint in a composite deck system[J]. Journal of Bridge Engineering, 2018, 23(8), 04018051.Pan W H, Fan J S, Nie J G, et al. Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultra-thin reactive-powder concrete layer[J]. Journal of Bridge Engineering, 2016, 21(10), 04016064. [43] Wang K K, Zhao C H, Wu B, et al. Fully-scale test and analysis of fully dry-connected prefabricated steel-UHPC composite beam under hogging moments[J]. Engineering Structures, 2019,197, 109380. [44] 中华人民共和国住房和城乡建设部.混凝土结构设计标准:GB/T 50010-2010[S].北京:中国建筑工业出版社, 2024. [45] 邓宗才,王义超,肖锐,等.高强钢筋UHPC梁抗弯性能试验研究与理论分析[J].应用基础与工程科学学报, 2015, 23(1):68-78. [45] 薛建阳.钢-混凝土组合结构与混合结构设计[M].北京:中国电力出版社, 2018. [47] 文忠,李莉,卢姗姗.钢筋活性粉末混凝土简支梁正截面受力性能试验研究[J].建筑结构学报, 2011, 32(6):25-134. [48] Liu C, Zhang Y X, Yao Y, et al. Calculation method for flexural capacity of high strain-hardening ultra-high performance concrete T-beams[J]. Structural Concrete, 2019, 20(1):405-419. [49] Canadian Standards Association. Canadian highway bridge design code:CSA S6:19[S]. Toronto:Canadian Standards Association, 2019. [50] Bae В I, Choi H K, Choi C S. Flexural strength evaluation of reinforced concrete members with ultra high performance concrete[J]. Advances in Materials Science and Engineering, 2016,2016, 2815247. [51] 徐海宾,邓宗才,陈春生,等.超高性能纤维混凝土梁抗剪性能试验研究[J].土木工程学报, 2014, 47(12):91-97. [52] Graybeal B A. Flexural behavior of an ultrahigh-performance concrete L-girder[J]. Journal of Bridge Engineering, 2008, 13(6):602-610. [53] European Committee for Standardization. National addition to Eurocode 2-design of concrete structures:specific rules for ultra-high performance fiber-reinforced concrete:NFP18-710[S]. Brussels:European Committee for Standardization, 2004. [54] Aaleti S, Petersen B, Sritharan S. Design guide for precast UHPC waffle deck panel system, including connections[M]. Washington:Create Space Independent Publishing Platform, 2014. [55] Qi J N, Wang J Q, Ma Z J. Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model:experiment and theory[J].Structural Concrete, 2018, 19(3):719-734. [56] 王文雷. RPC预应力梁相关设计参数研究[D].北京:北京交通大学, 2006. [57] 鲁胜虎.高强钢筋活性粉末混凝土梁受力性能试验及理论研究[D].桂林:桂林理工大学, 2013. [58] Aveston J, Kelly A. Theory of multiple fracture of fibrous composites[J]. Journal of Materials Science, 1973(8):352-362. [59] Lim T Y, Paramasivam P, Lee S L. Analytical model for tensile behaviour of steel-fibre concrete[J]. ACI Materials Journal,1987, 84(4):286-298. [60] Li V C, Stang H, Krenchel H. Micromechanics of crack bridging in fibre-reinforced concrete[J]. Materials and Structures, 1993,26:486-494. [61] Voo J Y L, Foster S J. Tensile-fracture of fibre-reinforced concrete:variable engagement model[C]//6th International RILEM Symposium on Fibre Reinforced Concretes. Varenna:RILEM Publications SARL, 2004:875-884. [62] Zhao Q, Fang X M, Nie Y, et al. Behavior and design of steelUHPC composite beams subjected to negative moment[J]. Structures, 2023, 57, 105183. [63] 邱明红,邵旭东,胡伟业,等.钢筋UHPC受弯构件裂缝宽度计算方法研究[J].土木工程学报, 2020, 53(10):89-98, 119. [64] 邓宗才,肖锐,徐海宾,等.高强钢筋超高性能混凝土梁的使用性能研究[J].哈尔滨工程大学学报, 2015, 36(10):1335-1340. [65] 徐海宾,邓宗才. UHPC梁开裂弯矩和裂缝试验[J].哈尔滨工业大学学报, 2014, 46(4):87-92. [66] 孙永新,蔺鹏臻,杨子江,等.考虑多影响因素的配筋UHPC梁裂缝宽度计算方法[J].东南大学学报(自然科学版),2023, 53(4):628-636. [67] 庄茁. ABAQUS有限元软件6. 4版入门指南[M].北京:清华大学出版社, 2004:438. [68] 张清华,韩少辉,贾东林,等.新型装配式UHPC华夫型上翼缘组合梁受力性能[J].西南交通大学学报, 2019, 54(3):445-452. [69] Markovich N, Kochavi E, Ben-dor G. An improved calibration of the concrete damage model[J]. Finite Elements in Analysis Design, 2011, 47(11):1280-1290. [70] Chen W S, Hong H, Chen S Y. Numerical analysis of prestressed reinforced concrete beam subjected to blast loading[J]. Materials and Design, 2015, 65:662-674. [71] Yin H, Shirai K, Teo W. Finite element modelling to predict the flexural behaviour of ultra-high performance concrete members[J]. Engineering Structures, 2019, 183:741-755. [72] Wang Y, Shao X D, Cao J H, et al. Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs[J]. Engineering Structures, 2021, 231, 111728. [73] Hung C C, Lee H S, Chan S N. Tension-stiffening effect in steelreinforced UHPC composites:constitutive model and effects of steel fibers, loading patterns, and rebar sizes[J]. Composites, 2019, 158:269-278. [74] Guo J Y, Wang J Y, Wu K. Effects of self-healing on tensile behavior and air permeability of high strain hardening UHPC[J].Construction and Building Materials, 2019, 204:342-356. [75] 陈善富,陈静芬,杨凤祥,等.双轴受压状态下的高延性纤维增强水泥基复合材料本构模型[J].工程力学, 2020, 37(12):94-105. [76] 邓方茜,徐礼华,池寅,等.基于均匀化理论的混杂纤维混凝土有效弹性模量计算[J].硅酸盐学报, 2019, 47(2):161-170. [77] Artz T, Yuan Z F, Kumar R, et al. Computational model for oxi-dation-assisted rupture of ceramic matrix composites[J]. International Journal of Solids and Structures, 2020, 202:195-207. [78] Advani S G, Tucker C L. The use of tensors to describe and predict fiber orientation in short fiber composites[J]. Journal of Rheology, 2000, 31(8):751-784. [79] Tal D, Fish J. Stochastic multiscale modeling and simulationframework for concrete[J]. Cement and Concrete Composites,2018, 90:61-81. [80] Fish J. Practical multiscaling[M]. United Kingdom:Willy, 2014. [81] Huang S Q, Yuan Z F, Fish J. Computational framework for short steel fiber reinforced ultra-hight performance concrete (COR-TUF)[J]. International Journal for Multiscale Computational Engineering, 2019, 17(5):551-562. [82] Nie J G, Fan J S, Cai C S. Stiffness and deflection of steel-concrete composite beams under negative bending[J]. Journal of Structural Engineering, 2004, 130(11):1842-1851. [83] Du H, Hu X M, Meng Y F, et al. Study on composite beams with prefabricated steel bar truss concrete slabs and demountable shear connectors[J]. Engineering Structures, 2020, 210, 110419. [84] 王景全,戚家南,刘加平.基于细观本构模型的UHPC梁受弯全过程分析[J].建筑结构学报, 2020, 41(9):137-144. [85] 王景全,吕志涛,刘钊.部分剪力连接钢-混凝土组合梁变形计算的组合系数法[J].东南大学学报(自然科学版), 2005,35(1):5-10. [86] Wang J Q, Qi J N, Tong T, et al. Static behavior of large stud shear connectors in steel-UHPC composite structures[J]. Engineering Structures, 2019, 178:534-542. [87] Kruszewski D, Wille K, Zaghi A E. Push-out behavior of headed shear studs welded on thin plates and embedded in UHPC[J].Engineering Structures,2018, 173:429-441. [88] 赵根田,曹亚楠,贾然,等.单调及重复荷载作用下栓钉连接件抗拔性能试验研究[J].建筑结构学报, 2019, 40(增刊1):418-423. [89] 蒲黔辉,谢宏伟,樊书文,等.拔出破坏的钢混组合结构栓钉连接件承载力的分析方法[J].工程科学与技术, 2019, 51(1):89-95. [90] 李嘉,杨波,邵旭东,等.钢桥面-薄层CRRPC组合结构栓钉连接件抗剪疲劳性能研究[J].土木工程学报, 2016, 49(6):67-75. [91] Chen J, Zhang H, Yu Q. Static and fatigue behavior of steet-concrete composite beams with corroded studs[J]. Journal of Constructional Steel Research, 2019, 156:18-27. [92] 李慧,刘永健,张宁,等.冻融循环作用后栓钉连接件受剪性能试验研究[J].建筑结构学报, 2019, 40(5):149-155. [93] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB50017-2017[S].北京:中国建筑工业出版社, 2018. [94] 翁雪微.钢-UHPC轻型组合桥面板中短栓钉的静力及疲劳性能研究[D].成都:西南交通大学, 2017. [95] Cao J H, Shao X D, Deng L, et al. Static and fatigue behavior of short-headed studs embedded in a thin ultra-high-performance concrete layer[J]. Journal of Bridge Engineering, 2017,22,040170055. [96] 曹君辉.钢-薄层超高性能混凝土轻型组合桥面结构基本性能研究[D].长沙:湖南大学, 2017. [97] 孙启力,路新瀛,聂鑫,等.非蒸养UHPC-钢板结构界面的受拉和剪切性能试验研究[J].工程力学, 2017, 34(9):167-174. [98] Dieng L, Marchand P, Gomes F, et al. Use of UHPFRC overlayto reduce stresses in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2013, 89:30-41. [99] Xue D Y, Liu Y Q, Yu Z, et al. Static behavior of multi-stud shear connectors for steel-concrete composite bridge[J]. Journal of Constructional Steel Research, 2012, 74:1-7. [100] 廖祟庆.钢-混凝土连续组合梁群钉连接件抗剪承载力试验研究[D].上海:同济大学. 2007. [101] Chen X, Yang Y, Xue Y C, et al. Shear behavior of large studsand novel bolted connectors in steel-UHPC composite beams[J].Structures, 2022, 45:2091-2103. [102] 陈阳,宁建,任重,等.装配式钢-薄层UHPC组合梁大直径群钉连接件抗剪性能数值分析[J].工业建筑, 2023, 53(究[J].建筑结构学报, 2022, 43(1):209-218. [115] 刘瑞,赵华,安家禾.钢板-UHPC组合桥面板抗弯性能试验及有限元分析[J].铁道科学与工程学报, 2022, 20(2):1-15. [115] 刘瑞,赵华,安家禾.钢板-UHPC组合桥面板抗弯性能试验及有限元分析[J].铁道科学与工程学报, 2022, 20(2):1-15. [116] 张凡,陈炳聪,刘爱荣,等.装配式钢-混凝土组合梁高强螺栓剪力连接件力学模型[J].工程力学, 2022, 39(增刊1):173-179. [116] 张凡,陈炳聪,刘爱荣,等.装配式钢-混凝土组合梁高强螺栓剪力连接件力学模型[J].工程力学, 2022, 39(增刊1):173-179. [117] Liu X P, Bradford M A, Ataei A. Flexural performance of innovative sustainable composite steel-concrete beams[J]. Engineering Structures, 2017, 130:282-296. [117] Liu X P, Bradford M A, Ataei A. Flexural performance of innovative sustainable composite steel-concrete beams[J]. Engineering Structures, 2017, 130:282-296. [118] Kwon G, Engelhardt M D, Klingner R E. Experimental behavior of bridge beams retrofitted with postinstalled shear connectors[J]. Journal of Bridge Engineering, 2011, 16(4):536-545. [118] Kwon G, Engelhardt M D, Klingner R E. Experimental behavior of bridge beams retrofitted with postinstalled shear connectors[J]. Journal of Bridge Engineering, 2011, 16(4):536-545. [119] Dai X H, Lam D, Saveri E. Effect of concrete strength and stud collar size to shear capacity of demountable shear connectors[J]. Journal of Structural Engineering, 2015, 141(11), 04015025. [119] Dai X H, Lam D, Saveri E. Effect of concrete strength and stud collar size to shear capacity of demountable shear connectors[J].Journal of Structural Engineering, 2015, 141(11), 04015025. [120] He J, Suwaed A S, Vasdravellis G. Horizontal pushout tests and parametric analyses of a locking-bolt demountable shear connector[J]. Structures, 2022, 35:667-683. [120] He J, Suwaed A S, Vasdravellis G. Horizontal pushout tests and parametric analyses of a locking-bolt demountable shear connector[J]. Structures, 2022, 35:667-683. [121] 陈炳聪.装配式钢-混凝土组合梁预埋螺母型螺栓连接件力学性能的研究[D].广州:广州大学, 2023. [121] 陈炳聪.装配式钢-混凝土组合梁预埋螺母型螺栓连接件力学性能的研究[D].广州:广州大学, 2023. [122] 王宣鼎,沈敏慧,钟国辉,等.大直径高强螺栓剪力件受剪性能研究[J].建筑结构学报, 2021, 42(增刊2):427-434. [122] 王宣鼎,沈敏慧,钟国辉,等.大直径高强螺栓剪力件受剪性能研究[J].建筑结构学报, 2021, 42(增刊2):427-434. [123] Chen Y, Zhao Y, West J, et al. Behaviour of steel-precast composite girders with through-bolt shear connectors under static loading[J]. Journal of Constructional Steel Research, 2014, 103:168-178. [123] Chen Y, Zhao Y, West J, et al. Behaviour of steel-precast composite girders with through-bolt shear connectors under static loading[J]. Journal of Constructional Steel Research, 2014,103:168-178. [124] 何余良,胡立普,曹鑫雨,等.混杂纤维混凝土螺栓剪力键究[J].建筑结构学报, 2022, 43(1):209-218. [124] 何余良,胡立普,曹鑫雨,等.混杂纤维混凝土螺栓剪力键究[J].建筑结构学报, 2022, 43(1):209-218.试验[J].中国公路学报, 2021, 34(6):90-98. [125] 严鑫.钢-混凝土新型可拆卸螺栓连接件抗剪性能研究[D].杭州:浙江大学, 2020. [126] 齐连训,罗云标,严加宝,等.高变形能力螺栓抗剪连接件抗剪承载力理论分析与验证[J].工程力学, 2021, 38(10):74-82. [127] 刘中良.装配式组合梁高强螺栓连接件抗剪性能试验研究[D].湘潭:湘潭大学, 2017. [128] 陈辛.钢-UHPC组合梁铰制孔螺栓连接件受力性能与设计方法研究[D].西安:西安建筑科技大学, 2023. [129] 李政圜,樊健生,马晓伟,等.基于悬吊系统的钢-混凝土组合桥面系试验[J].工程力学, 2019, 36(12):134-144. [130] Shariati M, Sulong N H R, Shariat A, et al. Behavior of Vshaped angle shear connectors:experimental and parametric study[J]. Materials and Structures, 2016, 49(9):3909-3926. [131] Shariati M, Sulong N H R, Shariat A, et al. Comparative performance of channel and angle shear connectors in high strength concrete composites:an experimental study[J]. Construction and Building Materials, 2016, 120:382-392. [132] Vianna J, Costa-neves L, Vellasco P, et al. Structural behaviour of T-perfobond shear connectors in composite girders:an experimental approach[J]. Engineering Structures, 2008, 30(9):2381-2391. [133] Kim S H, Kim K S, Park S, et al. Y-type perfobond rib shear connectors subjected to fatigue loading on highway bridges[J]. Journal of Constructional Steel Research, 2016, 122(7):445-454.
点击查看大图
计量
- 文章访问数: 152
- HTML全文浏览量: 9
- PDF下载量: 20
- 被引次数: 0