Research on the Long-Term Degradation Mechanism of the Stability Capacity of U-Rib Stiffened Plates in Offshore Steel Box Girders
-
摘要: 跨海大桥钢箱梁结构同时受到海洋腐蚀和车辆循环荷载的耦合作用,在长期服役过程中,不论是海水腐蚀还是由车轮荷载作用所产生的变形,都会对U肋加劲板的稳定承载力产生一定的影响。为了研究跨海钢箱梁U肋加劲板在长期运营过程中稳定承载力退化的机理,以钢箱梁顶板受压U肋加劲板构件为研究对象,采用ABAQUS有限元软件建立了U肋加劲板有限元模型,分析构件在腐蚀环境下弯曲变形与车轮荷载的耦合作用对U肋加劲板稳定承载力的影响。结果表明:对于不同车轮荷载比例的U肋加劲板,在相同的腐蚀年限下,随着荷载比例增加,承载能力逐渐降低,最大降低了5.27%;在相同超载比例下,随着腐蚀时间增加,承载力均有所降低,其中降低程度最大的超载比例为4时,腐蚀时间为100 a,较相同超载大小且未腐蚀构件降低了9.12%,即车轮荷载的大小以及海水的腐蚀作用均会对U肋加劲板的稳定承载力有一定的影响;在桥梁的运营过程中,由于结构自重及车轮荷载的作用,桥面板会出现不同程度的塑性变形使得U肋构件的受力不再是完全受轴向压力,而是出现偏心受力,当弯曲幅值为L/500、L/250时构件的极限稳定承载力较幅值为L/1000时分别降低了9.03%、19.16%,弯曲幅值的增大降低了构件的极限稳定承载力,从而加快构件达到稳定承载力的过程,但是并不会改变构件的破坏模式;当运营时长达到100 a时,考虑腐蚀、荷载与变形耦合作用时构件的极限稳定承载力较运营时长0a时降低了18.65%,相同情况下仅考虑腐蚀和考虑腐蚀与荷载耦合作用的极限稳定承载力降低了8.75%和8.65%,可知,相对于腐蚀,轮载单独或耦合作用车载及自重荷载产生的构件变形对U肋加劲板构件稳定承载力的影响更为显著。Abstract: The steel box girder structure of the offshore bridge is subject to the coupling effect of marine corrosion and vehicle cyclic load at the same time, and in the long-term service process, both seawater corrosion or wheel load-induced deformations, it will have a certain impact on the stability capacity of the U-rib stiffened. In order to study the mechanism of the degradation of the stability capacity of the U-rib stiffened plate of the cross-sea steel box girder during long-term operation, this paper takes the compressive U-rib stiffener member of the steel box girder roof as the research object, and used the ABAQUS finite element software to establish the finite element model of the U-rib stiffened plate to analyze the influence of the coupling effect of the bending deformation and wheel loads of the member in the corrosive environment on the stability capacity of the U-rib stiffened plate. The results showed that for the U-rib stiffened plate with different wheel load ratios, the bearing capacity gradually decreased with the increase of load ratios in the same corrosion period, and the maximum reduction was 5.27%. Under the same overload ratio, with the increase of corrosion duration, the bearing capacity was reduced, and when the overload ratio with the largest degree of reduction was 4, the corrosion duration wad 100 years, which was 9.12% lower than that of the same overload size and non-corroded components, and the size of the wheel load and the corrosion effect of seawater had a certain impact on the stability capacity of the U-rib stiffened plate. In the operation process of the bridge, due to the effect of the structural dead weight and the wheel load, the bridge deck showed different degrees of plastic deformation, so that the force of the U-rib member is no longer a complete axial compressive force, but an eccentric force, when the bending amplitude was L/500, L/250, the ultimate stability capacity of the component was reduced by 9.03% and 19.16% respectively compared with the bending member with the amplitude of L/1000 The increase of bending amplitude reduced the ultimate stability capacity of the component, thereby accelerating the process of reaching the stability capacity of the component, but did not change the failure mode of the component. When the operation time reached 100 years, the ultimate stability capacity of the component considering the coupling action of corrosion loads and deformations decreased by 18.65% compared to its inital states(0 h). Under the same circumstances, the ultimate stability capacity considering only corrosion and the coupling action of corrosion and load decreased by 8.75% and 8.65%, respectively. The influence of deformations caused by single or coupled wheel loads and dead weight on the stability of U-rib stiffened plate members was more significant than corrosion effects.
-
[1] 程斌,肖汝诚,赵金城. 双轴受压小刚度加劲厚板的极限强度计算[J]. 土木工程学报,2010,43(6):87- 93. [2] Bai L,Shen R,Wang L,et al. Experimental and numerical study on buckling behavior of a rigidly stiffened plate with tee ribs[J]. International Journal of Steel Structures,2018,18:582- 595. [3] 秦凤江,狄谨,周绪红,等. 钢箱梁U型肋加劲板受压稳定极限承载力影响因素分析[J]. 长安大学学报(自然科学版),2017,37(1):58- 66. [4] 甘采华,王华,刘世建. 开口加劲板件的稳定极限承载力研究[J]. 公路工程,2021,46(2):234- 240. [5] Wang F,Gu M,Chen Q,et al. Experimental study on stability of orthotropic steel box girder of self-anchored suspension cable-stayed bridge[J]. Thin-Walled Structures,2021,163,107727. [6] Cheng Q,Yao Z,Chen H,et al. Study on corrosion fatigue degradation performance of welded top plate-u rib of cross-sea steel box girder[J]. Buildings,2023,13(7),1784. [7] 张骏超. 板肋加劲板受压稳定承载力与计算方法研究[D]. 福州:福州大学,2020. [8] 赵秋,张骏超,林楚. U肋加劲板受压局部稳定计算方法研究[J]. 宁夏大学学报(自然科学版),2020,41(3):252- 261. [9] 赵秋,杨明,翟战胜,等. 受压U肋加劲板局部稳定受力性能数值模拟[J]. 建筑科学与工程学报,2017,34(1):32- 40. [10] 赵秋,翟战胜,陈宝春,等. U形肋加劲板局部稳定性试验研究[J]. 建筑结构学报,2017,38(7):156- 163. [11] Dunbar T E,Pegg N,Taheri F,et al. A computational investigation of the effects of localized corrosion on plates and stiffened panels[J]. Marine Structures,2004,17(5):385- 402. [12] 孟凡磊. 含点蚀损伤加筋板结构极限强度研究[D]. 大连:大连理工大学,2014. [13] 赵婷婷,徐善华,孔正义,等. 碳钢人工加速腐蚀试验研究[J]. 水利与建筑工程学报,2010,8(2):13- 15. [14] 徐善华,邱斌. 锈蚀H型钢偏心受压承载性能试验研究[J]. 实验力学,2013,28(4):536- 541. [15] 徐善华,张宗星,苏超,等. 中性盐雾环境锈蚀H型钢柱抗震性能试验研究[J]. 建筑结构学报,2019,40(1):49- 57. [16] 秦广冲,兰涛,苏健兴,等. 不同参数下锈损H型钢柱抗震性能数值分析[J]. 钢结构,2018,33(10):131- 135. [17] 徐善华,王皓,薛南. 锈蚀钢材偏心受压钢柱承载性能退化规律[J]. 哈尔滨工业大学学报,2016,48(6):157- 163. [18] 中华人民共和国交通运输部. 公路钢结构桥梁设计规范:JTG D64—2015[S]. 北京:人民交通出版社,2015. [19] 翟战胜. 混合钢U肋加劲板受压稳定性能与设计方法研究[D]. 福州:福州大学,2016. [20] 中华人民共和国交通部. 公路桥涵设计通用规范:JTG D60—2004[S]. 北京:人民交通出版社,2004. -
点击查看大图
计量
- 文章访问数: 57
- HTML全文浏览量: 21
- PDF下载量: 6
- 被引次数: 0



登录
注册
下载: