Finite Element Analysis of Pure Bending Properties of Square Steel Tube-Wood-Concrete Members
-
摘要: 木材因承载力高、绿色可再生等优势被广泛应用于工程领域。为降低钢管混凝土构件混凝土用量、减轻结构自重,将木材内置于钢管混凝土中,组成钢管-木-混凝土构件。由于纯弯构件是压弯构件的基础,也是压弯构件的辅助,因此对纯弯构件力学性能的研究具有重要意义。选用合适的钢材、混凝土、木材本构模型,采用ABAQUS软件建立方钢管-木-混凝土纯弯构件精细化分析模型,分析了典型构件的应力及中性轴高度变化规律,揭示了方钢管-木-混凝土纯弯构件的工作机理。在此基础上,研究了不同钢材屈服强度、含钢率、混凝土抗压强度、木芯截面形式、木材配置率对构件抗弯性能的影响规律。
研究结果表明:与普通钢管混凝土构件相比,木材的加入可替代核心混凝土提高方钢管-木-混凝土构件抗弯承载力和延性,同时减轻结构16%的自重,其强重比显著增大,构件钢材屈服强度从235 MPa增至420 MPa,其抗弯承载力可提升35.4%~63.5%,延性系数增大5.5%~13%;含钢率从8.5%增至18.1%,其抗弯承载力可提升24.5%~71.4%,延性系数增大4.8%~16%;提高混凝土强度对构件抗弯性能无显著影响,但对构件延性有所降低;木材配置率从8.1%增至100%时,其抗弯承载力可提升1%~21%,延性系数可增大5.4%~18.8%;木材在配置率为8.1%~32.7%时更容易发挥作用。因此,木材配置率为8.1%~32.7%时,可通过增大钢材屈服强度和含钢率的方式提高组合构件的延性与抗弯承载力。Abstract: Wood is widely used in engineering because of its high load-bearing capacity, green and renewable. In order to reduce the amount of concrete in steel pipe concrete members, and reduce structural weight, the wood is placed in the steel pipe concrete, to form the steel pipe-wood-concrete members. Since the pure bending member is the foundation of the compression bending member and the auxiliary of the compression bending member, the study of the mechanical properties of the pure bending member is of great significance. Reasonable selection of steel, concrete, wood of the constitutive model, this paper uses ABAQUS software to establish a square steel pipe-wood-concrete pure bending member refined analysis model, analyzing the typical member of the stress and neutral axis height change rule, revealing the square steel pipe-wood-concrete pure bending member of the working mechanism. On this basis, the influence of different steel yield strength, steel content rate, concrete compressive strength, wood core cross-section form, wood configuration rate on the flexural performance of the member was studied.
The results indicate that substituting wood for core concrete in the steel tube-wood-concrete members can enhance their flexural capacity and ductility. Additionally, it leads to a 16% reduction in the overall weight of the structure, and its strength-to-weight ratio is significantly increased. When the yield strength of steel components is increased from 235 MPa to 420 MPa, the flexural capacity can be increased by 35. 4%-63. 5%, and the ductility coefficient can be increased by 5. 5%-13%. When the steel content is increased from 8. 5% to 18. 1%, the flexural capacity can be increased by 24. 5% to 71. 4%, and the ductility coefficient can be increased by 4.8% to 16%. The increase of concrete strength has no significant effect on the flexural performance of the members, but it reduces the ductility of the members. The bending capacity of wood increased from 18. 1% to 100%, and the ductility coefficient increased by 5. 4% to 18. 8%. Wood is more likely to play a role when the allocation rate is 8. 1% to 32. 7%. Therefore, when the ratio of wood is 8. 1%-32. 7%, by increasing the yield strength and steel content of the steel component, the ductility and flexural capacity of the composite members can be further enhanced. -
[1] 韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社,2007. [2] Zhang A, Liu J, Wang J, et al. Experimental and analytical behaviour of light gauge steel-fast growing timber composite shear connections[J]. Structures, 2023, 47:1691-1709. [3] 王倩.落叶松胶合木柱力学性能试验研究[D].长沙:中南林业科技大学, 2013. [4] 单亮.旋切板胶合木柱的轴心受压性能研究[D].扬州:扬州大学, 2014. [5] 彭宏毅.木-混凝土组合梁螺钉连接件推出试验研究[D].南京:南京工业大学,2010. [6] 陈元东,胡夏闽.工程木-混凝土组合梁分析[J].山西建筑, 2011,37(6):29-31. [7] 何敏娟,罗文浩.轻木-混凝土上下组合结构及其关键技术[J].建设科技,2015(3):30-32. [8] Jasieńko J, Nowak T P. Solid timber beams strengthened with steel plates-Experimental studies[J]. Construction and Building Materials, 2014, 63(5):81-88. [9] Qiao Q, Yang Z, Mou B. Experimental study on axial compressive behavior of CFRP confined square timber filled steel tube stub columns[J]. Structures, 2020, 24(3):823-834. [10] 马溯源.外粘贴BFRP布加固新疆杨圆形截面短柱轴心抗压试验研究[D].乌鲁木齐:新疆大学,2017. [11] Nabati A, Ghanbari-Ghazijahani T, Ng C T. CFRP-reinforced concrete-filled steel tubes with timber core under axial loading[J]. Composite Structures, 2019, 217(6):37-49. [12] Khelifa M, Lahouar M A, Celzard A. Flexural strengthening of finger-jointed timber beams with CFRP[J]. Journal of Adhesion Science and Technology, 2015, 29(19):2104-2116. [13] Ghanbari-Ghazijahani G T, Jiao H, Holloway D. Concrete-filled circular steel tubes with a timber infill under axial compression[J]. Construction and Building Materials, 2017, 94(2):791-799. [14] 李帼昌,岳祥虎,杨志坚.钢管-木-混凝土轴压短柱有限元分析[J].沈阳建筑大学学报(自然科学版),2021,37(2):193-201. [15] 荣秀强,凌志彬.内填木芯钢管混凝土短柱轴压性能有限元分析[J].建筑钢结构进展,2022,24(5):8-17. [16] 刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学,2005. [17] 龙卫国,杨学兵.木结构设计手册[M].北京:中国建筑工业出版社,2005. [18] 曹磊.落叶松胶合木梁力学性能研究[D].长沙:中南林业科技大学,2017. [19] Neely S T. Relation of compression endwise to breaking load of beam[C]//Circular No. 18, Progress in Timber Physics, Division of Forestry. Washington D C, U. S:Department of Agriculture, 1898:13-17. [20] Bazan I M M. Ultimate bending strength of timber beams[D]. Nova Scotia, Canada:Technical University of Nova Scotia,1980. [21] 曹海.花旗松工程木的材性研究[J].黄山学院学报,2010,12(5):95-97. [22] 王思浩,余鑫,王志滨,等.花旗松工程木的材性研究[J].黄山学院学报, 2010, 12(5):95-97. [23] 肖鸿志.木-混凝土组合梁PBL连接件的受力性能研究[D].长沙:中南林业科技大学,2016. [24] 赵东拂,王磊,孟颖.钢-木组合柱抗侧力性能试验研究及有限元分析[J].振动与冲击,2018,37(11):61-70,135. [25] 韦灼彬,陶忠,韩林海.方钢管混凝土纯弯构件力学性能及承载力的研究[J].工业建筑,1998,28(10):6-9. [26] Khelifa M, Auchet S, Méausoone P J. Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers[J]. Engineering Structures,2015,101:364-375.
点击查看大图
计量
- 文章访问数: 57
- HTML全文浏览量: 14
- PDF下载量: 3
- 被引次数: 0