Research on the Explosion Resistance Performance of a Novel Escape Door for the Utility Tunnel
-
摘要: 综合管廊作为现代化城市重要管线的布设构筑物,不仅有效降低管线运维难度,还可提高管线的使用寿命和抗灾能力。为确保市政地下综合管廊战时抗毁能力,维持战时城市的正常运转,提出了综合管廊新型逃生密闭门,实现对管廊重要口部位置的防护,并采用数值模拟手段,分析了化武荷载和核武荷载冲击波作用下逃生门的位移、应力和变形等参数。结果表明:该逃生门满足防护要求,在化武荷载作用下,逃生门存在明显的反弹效应,最大反弹位移主要取决于爆炸荷载中的负压;闭锁连轴和合页是逃生门的主要约束构件,在冲击波、反弹效应等因素作用下受力复杂且集中应力较大,因此应采用必要的优化设计。Abstract: As an important layout structure for modern urban pipelines, the utility tunnel can not only effectively reduce the difficulty of pipeline operation and maintenance, but also improve the service life and disaster resistance. In order to ensure the destruction-resistance capacity of the city's underground utility tunnel and maintain the normal operation, a new type of air-tight escape door for the utility tunnel has been proposed, which provides protection for the important entrance positions of the utility tunnel. At the same time, numerical simulation methods were used to analyze the displacement, stress, and deformation parameters of the escape door under the impact waves of chemical and nuclear loads. The results indicated that the escape door met the protection requirements, and there was a significant rebound effect under the action of chemical weapons loads. Meanwhile, the maximum rebound displacement mainly depended on the negative pressure in the explosion load. At last, the locking shaft and hinges were the main restraining components of the escape door, which were subjected to complex and concentrated stresses under factors such as shock waves and rebound effects. Therefore, necessary optimization design should be adopted.
-
Key words:
- utility tunnel /
- escape door /
- air-tight protective door /
- rebound effect /
- structural analysis /
- numerical simulation
-
[1] 许云骅. 综合管廊兼顾人防工程的可行性分析及关键设计要点[J]. 中国市政工程,2018(6):44- 46,101- 102. [2] 黄慷. 杭州亚运村综合管廊兼顾人防设计方法研究[J]. 地下空间与工程学报,2021,17(5):1337- 1350. [3] 陈一村,陈志龙,赵旭东,等. 城市地下综合管廊兼顾人防要求探讨[J]. 防护工程,2016(2):41- 46. [4] 曹继勇,何涛,刘宏. 综合管廊兼顾人防技术要求与政策建议[J]. 中华建设,2016(11):76- 78. [5] 邓智勇. 地下综合管廊兼顾人防工程设计要点探讨[J]. 低碳世界,2017(21):186- 187. [6] 强健. 综合管廊的功能区间及应用[J]. 中国给水排水,2020,36(18):45- 50. [7] 方秦,陈力,杜茂林. 端部设置弹簧和阻尼器提高防护门抗力的理论与数值分析[J]. 工程力学,2008(3):194- 199,221. [8] 方秦,谷波,张亚栋. 钢结构防护门结构优化的数值分析[J]. 解放军理工大学学报(自然科学版),2006(6):557- 561. [9] 李秀地,耿振刚,苗朝阳,等. 温压弹爆炸冲击波作用下防护门破坏模式研究[J]. 振动与冲击,2016,35(16):199- 203. [10] 苗朝阳,李秀地,孙伟,等. 温压弹爆炸冲击波作用下防护门的动力响应[J]. 四川兵工学报,2015,36(10):51- 54. [11] 陶金鑫,贾鑫,黄正祥,等. POZD涂层对防护门抗冲击性能影响研究[J]. 振动与冲击,2022,41(4):232- 238. [12] 方浩,李秀地,耿振刚,等. 高阻尼橡胶填充钢制防护门动力响应数值模拟[J]. 兵器装备工程学报,2017,38(9):173- 177. [13] 郭东,刘晶波,闫秋实. 冲击波负压对防护门反弹效应的影响分析[J]. 振动与冲击,2011,30(8):82- 86,91. [14] 郭东,刘晶波,闫秋实. 爆炸荷载作用下防护门反弹效应的影响因素分析[J]. 工程力学,2011,28(12):206- 212. [15] 陈俊岭,李哲旭,舒文雅,等. 不同应变率下Q345钢材力学性能试验研究[J]. 东南大学学报(自然科学版),2015,45(6):1145- 1150. [16] 孟利平,程远征,张伦平,等. 应变率和应力三轴度对Q345B钢动态力学性能的影响研究[J]. 船舶力学,2019,23(10):1210- 1220. [17] 于文静,史健勇,赵金城. Q345钢材动态力学性能研究[J]. 建筑结构,2011,41(3):28- 30,63. [18] 吴小燕,孔新立,孟凡茂,等. 防护门的爆炸反弹效应研究进展[J]. 爆破,2016,33(2):137- 141. [19] 郭东. 爆炸荷载作用下防护门的动态响应行为与反弹机理研究[D]. 北京:清华大学,2012. [20] 杨军,张帝,任光. 基于CONWEP动态加载的建筑物爆破拆除数值模拟[J]. 工程爆破,2016,22(5):1- 6,91. [21] 中华人民共和国住房和城乡建设部. 人民防空工程设计规范:GB 50225—2005[S]. 北京:中国计划出版社,2006. [22] 岳金. 碳纤维复合材料防护门抗冲击性能研究[D]. 武汉:武汉理工大学,2015. [23] Castellano A J,Caltagirone J P,Sock F E,et al. Structures to resist the effects of accidental explosions(TM5-1300)[M]. Washington D C:U S Department of the Army,1990. -
点击查看大图
计量
- 文章访问数: 57
- HTML全文浏览量: 17
- PDF下载量: 3
- 被引次数: 0



登录
注册
下载: