Developments of Concrete-Filled Steel Tube Structures Stiffened by Diagonal Ribs
-
摘要: 钢管混凝土柱承载力高、抗震性能优越、造价适中,是超高层结构和大型重载结构常用的竖向承重柱形式。方钢管混凝土柱与圆钢管混凝土柱相比,其截面相对开展,具有抗弯刚度大、抗弯承载力高、节点构造简单、加工施工方便、便于建筑空间布置与装修等优点,因此其在实际工程中应用广泛。然而,研究表明方钢管混凝土的组合效应较弱,需在其钢管内采取加劲措施以提升钢管与混凝土之间的组合作用;同时通常还需在方钢管内焊接剪力连接件提高钢管与混凝土界面的纵向剪力传递能力。已有加劲形式可归纳总结为点约束、横向封闭式约束及开放式纵向线约束。在方钢管的两邻边设置斜拉加劲肋(简称斜拉肋),是近年来新发展起来的高效加劲形式,斜拉肋可实现纵横向连续封闭式约束,同时具有剪力连接件功能。系统总结了斜拉肋加劲钢管混凝土构件、节点及体系的力学性能及设计方法。在构件层面,对柱的轴压、偏压和抗震性能进行了研究,建议了斜拉肋合理构造形式、钢管宽厚比限值、斜拉肋与钢管的厚度匹配关系及轴压比限值,提出了计算斜拉肋加劲钢管混凝土柱截面压弯承载力的修正塑性应力分布方法,揭示了超短柱的受剪机理并建立了抗剪模型及剪力-剪切变形关系。在节点层面,对斜拉肋加劲钢管混凝土柱-钢筋混凝土梁节点的轴压及抗震性能进行了研究,明确了节点轴压及受剪机理,建议了节点区合理构造以达到“强节点、弱构件”的要求,提出了考虑轴压比及柱受压区高度影响的修正黏结滑移计算公式,该公式可准确预测节点区梁筋的滑移行为。在体系层面,对斜拉肋加劲钢管混凝土柱-钢筋混凝土梁框架进行了静力弹塑性分析、增量动力分析(IDA)及地震易损性分析,明确了体系的屈服机制及抗倒塌机制。研究结果表明,斜拉加劲肋集合了已有的钢管混凝土加劲形式特点,能有效传递界面剪力、约束混凝土、避免或延缓钢管局部屈曲,显著提升了钢管混凝土的承载力、变形能力和抗震性能,具有较大的应用前景。最后列举了斜拉肋加劲钢管混凝土结构的主要工程应用场景,展望了该结构的发展方向和需进一步研究的问题。Abstract: Concrete-filled steel tubular (CFST) columns have high strength, favorable seismic performance, reasonable cost, and are widely used as the main structural types in high-rise buildings and heavily-loaded structures. In comparison to circular CFST columns, square CFST columns have the advantages of relatively wide section, large flexural stiffness, high flexural capacity, simple joint details, convenient manufacturing and construction, convenient layout of building space, and easy decoration, and thus are widely used in practical engineering. However, the previous research indicated that the composite action between a rectangular steel tube and the in-filled concrete is relatively weak and can be improved by setting stiffening schemes. Meanwhile, shear connectors are usually welded to the steel tube to improve the interfacial longitudinal shear transfer capacity. The existing stiffening forms are summarized as point-open, point-closed and line-open confinement. The diagonal stiffener, welded on two adjacent sides of a steel tube is referred to as the diagonal rib; it is a new efficient stiffener developed recently and can also be used as the shear connector. This paper systematically summarizes the mechanical behavior and design methods of members, joints, and frames of concrete-filled steel tube stiffened by diagonal ribs. At the level of members, the concentric compression, eccentric compression and seismic behavior of columns were analyzed; the details of diagonal ribs, width-to-thickness ratio limits, thickness matching relationship between the diagonal rib and steel tube, and axial load ratio limits were recommended; the modified plastic stress distribution method was proposed to calculate the strength of columns under combined compression and bending; the shear mechanism of ultra-short columns was figured out, and the shear model and shear force versus shear deformation relationships were proposed. At the level of joint, the axial compression and seismic behavior of CFST column to RC beam joints were studied; the axial compression and shear mechanism were analyzed, and the rational details of the joint zone were suggested to satisfy the requirement of strong-joint/weak-component; the modified equations, which considered the effect of axial load and compression zone height of the column, were proposed to more accurately predict the bond performance of beam reinforcements in the joint zone. At the level of frame system, the pushover analyses, IDA analyses and seismic fragility analyses of CFST column stiffened by diagonal ribs to RC beam frame were conducted, and the yielding mechanism and collapse mechanism were analyzed. The results showed that the diagonal ribs combine the advantages of existing stiffeners, efficiently transferring the interfacial shear force, constraining the concrete and avoiding or postponing the local buckling of steel tube, significantly improve the load capacity, deformation capacity, and seismic performance of square concrete-filled steel tubular columns, and have great application prospect in practical engineering. Finally, the engineering application scenarios for diagonal-rib stiffened CFST structures are listed; the development direction and problems which need further investigation of the structure are outlined.
-
[1] Han L H, Li W, Bjorhovde R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures:members[J]. Journal of Constructional Steel Research, 2014, 100:211-228. [2] 任庆英, 赵庆宇, 刘文珽, 等. 内壁设置栓钉的大尺寸截面钢管混凝土柱界面黏结性能试验研究[J]. 建筑结构学报, 2016, 37(12):105-113. [3] Wang B, Liang J, Lu Z. Experimental investigation on seismic behavior of square CFT columns with different shear stud layout[J]. Journal of Constructional Steel Research, 2019, 153:130-138. [4] 蔡健, 龙跃凌. 带约束拉杆方形、矩形钢管混凝土短柱的轴压承载力[J]. 建筑结构学报, 2009, 30(1):7-14. [5] Yang Y, Wang Y, Fu F. Effect of reinforcement stiffeners on square concrete-filled steel tubular columns subjected to axial compressive load[J]. Thin-Walled Structures, 2014, 82:132-144. [6] Huang C S, Yeh Y K, Liu G Y, et al. Axial load behavior of stiffened concrete-filled steel columns[J]. Journal of Structural Engineering, 2002, 128(9):1222-1230. [7] Wang Y, Yang Y, Zhang S. Static behaviors of reinforcement-stiffened square concrete-filled steel tubular columns[J]. Thin-Walled Structures, 2012, 58:18-31. [8] Tao Z, Han L H, Wang Z B. Experimental behaviour of stiffened concretefilled thin-walled hollow steel structural (HSS) stub columns[J]. Journal of Constructional Steel Research, 2005, 61(7):962-983. [9] 张耀春, 陈勇. 设直肋方形薄壁钢管混凝土短柱的试验研究与有限元分析[J]. 建筑结构学报, 2006, 27(5):16-22. [10] 黄宏, 张安哥, 李毅, 等. 带肋方钢管混凝土轴压短柱试验研究及有限元分析[J]. 建筑结构学报, 2011, 32(2):75-82. [11] 周绪红, 刘永健, 姜磊, 等. PBL加劲型矩形钢管混凝土结构力学性能研究综述[J]. 中国公路学报, 2017, 30(11):45-62. [12] Alatshan F, Osman S A, Hamid R, et al. Stiffened concrete-filled steel tubes:a systematic review[J/OL]. Thin-Walled Structures, 2020, 148[2020-01-20]. https://doi.org/10.1016/j.tws.2019.106590. [13] 钟善桐. 钢管混凝土中钢管与混凝土的共同工作[J]. 哈尔滨建筑大学学报, 2001, 34(1):6-10. [14] Zhou Z, Gan D, Zhou X H. Improved composite effect of square concrete-filled steel tubes with diagonal binding ribs[J/OL]. Journal of Structural Engineering, American Society of Civil Engineers, 2019, 145(10)[2019-08-10]. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002400. [15] Gan D, Zhou Z, Zhou X H. Axially loaded thin-walled square concrete-filled steel tubes stiffened with diagonal binding ribs[J]. ACI Structural Journal, 2019, 116(6):265-280. [16] 杨有福, 郭宏鑫. 加劲薄壁高强方钢管混凝土短柱的轴压性能[J]. 华南理工大学学报(自然科学版), 2021, 49(8):43-52. [17] Zhou X H, Zhou Z, Gan D. Analysis and design of axially loaded square CFST columns with diagonal ribs[J/OL]. Journal of Constructional Steel Research, 2020, 167[2019-12-30] https://doi.org/10.1016/j.jcsr.2019.105848. [18] 中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范:GB 50936-2014[S]. 北京:中国建筑工业出版社, 2014. [19] Tao Z, Han L H, Wang D Y. Strength and ductility of stiffened thinwalled hollow steel structural stub columns filled with concrete[J]. Thin-Walled Structures, 2008, 46:1113-1128. [20] Tao Z, Uy B, Han L H, et al. Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression[J]. Thin-Walled Structures, 2009, 47(12):1544-1556. [21] Uy B. Local and post buckling of concrete filled steel welded box columns[J]. Journal of Constructional Steel Research, 2018, 47(1/2):47-72. [22] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826. [23] 董宏英, 李瑞建, 曹万林, 等. 不同腔体构造矩形截面钢管混凝土柱轴压性能试验研究[J]. 建筑结构学报, 2016, 37(5):69-81. [24] Gan D, Li Z, Yan B, et al. Eccentric compression behaviour of diagonal rib-stiffened thin-walled square concrete filled steel tubes[J/OL]. ThinWalled Structures, 2022, 173[2022-02-18]. https://doi.org/10.1016/j.tws.2022.108991. [25] Zhou Z, Gan D, Zhou X H. Cyclic-shear behavior of square thin-walled concrete-filled steel tubular columns with diagonal ribs[J/OL]. Engineering Structures, 2022, 259[2022-03-23]. https://doi.org/10. 1016/j.engstruct.2022.114177. [26] Zhou Z, Gan D, Denavit M D, et al. Seismic performance of square concrete-filled steel tubular columns with diagonal binding ribs[J/OL]. Journal of Constructional Steel Research, 2022, 189[2021-11-25]. https://doi.org/10.1016/j.jcsr.2021.107074. [27] 周政, 甘丹, 周绪红. 斜拉肋加劲薄壁方钢管混凝土柱的滞回性能研究[J]. 土木工程学报, 2021, 54(6):14-25. [28] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3):36-46. [29] Zhou Z, Zhou X H, Yan B, et al. Shear strength of stiffened square thin-walled concrete-filled steel tubular columns[J/OL]. Journal of Building Engineering, 2022, 58[2022-06-12]. https://doi.org/10.1016/j.jobe.2022.104968. [30] Gan D, Zhao Z, Zhou Z, et al. Axial compression behavior of reinforced concrete beam to square thin-walled concrete-filled steel tube column joints stiffened by internal diaphragms[J]. Structural Concrete, 2023, 24(3):3674-3691. [31] Gan D, Zhou Z, Zhou X H, et al. Seismic behavior tests of square reinforced concrete-filled steel tube columns connected to RC beam joints[J/OL]. Journal of Structural Engineering, 2019, 145(3)[2018-10-28]. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002280. [32] Zhou X H, Zhou Z, Gan D. Cyclic testing of square tubed-reinforcedconcrete column to RC beam joints[J]. Engineering Structures, 2018, 176:439-454. [33] Zhou Z, Gan D, Zhou X H, et al. Square reinforced CFST column to RC beam joint subjected to lateral loading:An investigation using finite element analysis[C]//Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures-ASCCS 2018. Universitat Politècnica València, 2018. [34] Gan D, Li H P, Zhou Z, et al. Effect of column flexural capacities and axial loads on bond behavior of reinforcement of interior beam-column joints[J/OL]. Engineering Structures, 2023, 289[2023-05-14]. https://doi. org/10.1016/j.engstruct.2023.116331. [35] NZS. Concrete structures standard:the design of concrete structures[S]. Wellingion, New Zealand:Standards New Zealand, 2006. [36] 黎翔, 周绪红, 刘界鹏, 等. 圆钢管约束型钢混凝土柱-钢梁框架结构体系分析[J]. 建筑结构学报, 2021, 42(增刊2):31-40. [37] 施炜. RC框架结构基于一致倒塌风险的抗震设计方法研究[D]. 北京:清华大学, 2015.
点击查看大图
计量
- 文章访问数: 266
- HTML全文浏览量: 68
- PDF下载量: 16
- 被引次数: 0