State of Art and Future Insights of the Seismic Performance of Steel-Concrete Composite Structures
-
摘要: 钢-混凝土组合结构因具有抗弯刚度大、承载力高、延性好和施工便捷等优点,适应国家新型城镇化建设重大需要,在城市人口密集区域和抗震设防高烈度区域应用广泛。在提高工程结构抗震设防标准的背景下,研究钢-混凝土组合结构的抗震性能,进一步提升其抗震韧性,建立具有更高韧性的钢-混凝土组合结构抗震设计方法对促进建筑结构实现“双碳”战略目标具有重要意义。
为此,归纳总结了钢-混凝土组合结构抗震性能的研究进展,包括钢-混凝土组合梁、钢管混凝土柱及钢管混凝土柱-组合梁节点的滞回性能试验研究,以及钢-混凝土组合结构体系的拟静力、拟动力及振动台试验研究,讨论并比较了各种抗震分析模型及其方法,提出了当前研究存在的一些问题和尚需深入研究的方向。
基于现有研究成果总结得到:1)组合梁主要依靠钢梁耗能,可采取增大钢梁截面尺寸的措施提高耗能能力。钢管混凝土柱主要依靠钢管和混凝土耗能,可采取拉筋增强约束措施直接约束混凝土,使其由脆性向塑性转变从而提高框架柱的耗能能力。与其他类型组合节点相比,刚性连接组合节点具有更好的耗能能力。2)罕遇地震下框架结构以梁耗能为主,而在超罕遇地震下仍以梁作为主要耗能部件将使工程成本大幅增加。由于超罕遇地震发生概率极低,若采取适当的增强约束措施使柱也具备耗能能力并参与耗能,则可在适当增加工程建设成本的同时使结构具有抵抗超罕遇地震的能力,此时组合结构抗震设计理念可由罕遇地震时的“强柱弱梁,梁耗能为主”向超罕遇地震时的“梁柱共同耗能”推进。3)基于平截面假定的杆系纤维模型计算软件通常适用于弹性和弹塑性小变形阶段分析,而当组合结构处于塑性大变形阶段时,结构杆件便不再符合平截面假设。对强震下组合结构体系的动力响应仿真模拟需要克服弹塑性小变形阶段的假定条件,采用适用于塑性大变形阶段结构分析的混凝土三轴弹塑性本构模型及相应的体-壳元模型是一种有效的途径。4)剪力墙结构具有整体性好、侧向刚度大等优点,但传统构造下其抗震能力较弱,可通过提升连梁和墙肢等耗能构件的耗能能力以增强结构整体耗能能力,如采用钢-混凝土组合连梁、型钢混凝土连梁或合理构造钢板连梁,以及型钢-约束混凝土或钢管混凝土墙肢等。5)工程结构在使用阶段面临着诸多灾害考验,传统方法根据不同外荷载进行独立抵抗设计,忽视了多灾害耦合作用机制,使结构综合抗灾性能难以满足使用需求,故建立安全可靠的抗多灾害设计方法和结构体系是结构工程师在防灾减灾领域的一项重大课题。Abstract: Steel-concrete composite structures that meeting the needs of national new-type urbanization construction were widely used in urban and high seismic precautionary intensity areas due to outstanding flexural stiffness, bearing capacity, ductility, and convenient construction. In the background of enhancing seismic precautionary criterion of engineering structures, studying the seismic performance of steel-concrete composite structures, further improving their seismic toughness, and establishing seismic design methods with higher toughness for steel-concrete composite structures are of great significance in promoting the achievement of China’s “dual carbon” target in building structures.
The authors summarized the research progress on the seismic performance of steel-concrete composite structures, including experimental research on the hysteresis performance of steel-concrete composite beams, CFST columns, and composite joints, as well as pseudo-static, pseudo-dynamic, and shaking table tests of steel-concrete composite structural systems. Various seismic analysis models and methods were compared, and some existing problems and directions for further research were proposed in this paper.
Based on the analysis of the current research, the conclusions and prospects are as follows: 1) Steel beams are the main energy dissipation components of composite beams, and increasing the cross section of steel beams can improve the energy dissipation capacity of composite beams. CFST columns mainly rely on steel tube and core concrete for energy dissipation, and the strengthened restraint measure of the column end stirrup-confined can be taken to directly constrain the core concrete, transforming it from brittle to plastic, thereby enhancing the energy dissipation capacity of frame columns. Compared with other types of composite joints, the energy dissipation capacity of rigid connection composite joints is stronger; 2) Beams are the major energy dissipation components of frame structures in rarely occurred earthquakes. However, it will significantly increase engineering costs when beams act as the major energy dissipation components in extremely rare earthquakes. As is well known, the probability of extremely rare earthquakes occurring is extremely low. If some strengthened restraint measures are taken, which enable the columns to have energy dissipation capacity and participate in energy dissipation, the structure can own the ability to resist extremely rare earthquakes while increasing costs appropriately. Therefore, the seismic design concept of composite structures can be advanced from “strong columns and weak beams with beam energy dissipation mainly” in rarely occurred earthquakes to “beams and columns energy dissipation together” in extremely rare earthquakes; 3) The software for fiber model based on the assumption of flat cross-section is usually suitable for the stages of elastic and elastic-plastic in small deformation, while this assumption will fail in the stage of large plastic deformation. Dynamic simulation of composite structural systems under strong earthquakes requires overcoming the assumed conditions of small elastic-plastic deformation stage, and it is an effective method to use the triaxial elastic-plastic constitutive model of concrete and the corresponding solid & shell element during the stage of large plastic deformation; 4) Shear wall structures with advantages of good integrity and high lateral stiffness have weaker seismic resistance under traditional construction. In order to enhance the energy dissipation capacity of shear wall structures, measures such as steel-concrete composite coupling beams, steel reinforced concrete coupling beams, or steel coupling beams, as well as steel reinforced concrete or CFST wall piers can be adopted; 5) Engineering structures face various disasters during their use stage. Traditional design methods based on independent various external loads neglects the coupling mechanism of multiple disasters, making it difficult for the structure to meet the usage requirements under multiple disasters. Therefore, establishing safe and reliable multi-disaster design methods and structural systems is a major task for structural engineers in the field of disaster prevention and reduction. -
[1] 聂建国.钢-混凝土组合结构:原理与实例[M].北京:科学出版社, 2009. [2] Daniels J H, Kroll G D, Fisher J W. Behavior of composite-beam to column joints[J]. Journal of the Structural Division, 1970, 96(3):671-685. [3] Humar J L. Composite beams under cyclic loading[J]. Journal of the Structural Division, 1979, 105(10):1949-1965. [4] Gowda S S, Hassinen P. Behavior of steel-concrete composite members for arctic offshore structures[C]//Proceedings of the First International Offshore and Polar Engineering Conference. Edinburgh, UK:[s.n.], 1991:548-555. [5] Taplin G, Grundy P. Steel-concrete composite beams under repeated load[C]//Composite Construction in Steel and Concrete IV.[s.l.:s.n.], 2000:37-50. [6] Gattesco N, Giuriani E. Experiment study on stud shear connectors subjected to cyclic loading[J]. Journal of Constructional Steel Research, 1996, 38(1):1-21. [7] Gattesco N, Giuriani E, Gubana A. Low-cycle fatigue test on stud shear connectors[J]. Journal of Structural Engineering, 1997, 123(2):145-150. [8] Taplin G, Grundy P. Incremental slip of stud shear connectors under repeated loading[C]//Composite Construction Conventional and Innovative, Conference Report, International Conference. Innsbruckm, Austria:[s.n.], 1997:145-150. [9] Bursi O S, Gramola G. Behaviour of composite substructures with full and partial shear connection under quasi-static cyclic and pseudo-dynamic displacements[J]. Materials and Structures, 2000, 33:154-163. [10] Bursi O S, Sun F F, Postal S. Non-linear analysis of steel-concrete composite frames with full and partial shear connection subjected to seismic loads[J]. Journal of Constructional Steel Research, 2005, 61(1):67-92. [11] 聂建国,余洲亮,叶清华.钢-混凝土叠合板组合梁抗震性能的试验研究[J].清华大学学报(自然科学版), 1998, 38(10):35-37. [12] 蒋丽忠,邹飞,余志武.低周反复荷载作用下钢-混凝土组合梁的延性[J].铁道科学与工程学报, 2005, 2(5):23-27. [13] 辛学忠,蒋丽忠,曹华.钢-混凝土连续组合梁的恢复力模型[J].建筑结构学报, 2006, 27(1):83-89. [14] 蒋丽忠,戚菁菁,曹华,等.力比对钢-混凝土连续组合梁抗震性能的影响[J].工程抗震与加固改造, 2006, 28(3):21-25. [15] 蒋丽忠,邹飞,戚菁菁,等.横向配箍率对钢-混凝土组合梁抗震性能的影响[J].工业建筑, 2007, 37(8):1-4,13. [16] 蒋丽忠,余志武,曹华,等.剪力连接度对钢-混凝土组合梁抗震性能的影响[J].建筑结构, 2008, 38(3):52-54,120. [17] Ding F X, Liu J, Liu X M, et al. Experimental investigation on hysteretic behavior of simply supported steel-concrete composite beam[J]. Journal of Constructional Steel Research, 2018, 144:153-165. [18] Liu J, Lyu F, Ding F X, et al. Energy dissipation of steel-concrete composite beams subjected to vertical cyclic loading[J]. Advanced Steel Construction, 2022, 18(3):658-669. [19] Wakabayashi M. Review of research on concrete filled steel tubular structures in Japan[C]//Proceedings of the International Speciality Conference on Concrete Filled Steel Tubular Structures (including Composite Beams).[s.l.:s.n.], 1988:5-11. [20] Tomii M, Sakino K, Xiao Y, et al. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube-experimental results of preliminary research[C]//Proceedings of the International Speciality Conference on Concrete Filled Steel Tubular Structures. Harbin, China:[s.n.], 1985:119-125. [21] Elremaily A, Azizinamini A. Behavior and strength of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research, 2002, 58(12):1567-1591. [22] 吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报, 2000, 21(2):2-11,27. [23] 韩林海,游经团,杨有福,等.往复荷载作用下矩形钢管混凝土构件力学性能的研究[J].土木工程学报, 2004, 37(11):11-22. [24] Liu J P, Zhou X H, Zhang S M. Seismic behaviour of square CFT beam-columns under biaxial bending moment[J]. Journal of Construction Steel Research, 2008, 64(12):1473-1482. [25] 游经团,韩林海.钢管高性能混凝土压弯构件滞回性能试验研究[J].地震工程与工程振动, 2005, 25(3):98-103. [26] Yadav R, Chen B C, Yuan H H, et al. Analytical behavior of CFST bridge piers under cyclic loading[J]. Procedia Engineering, 2017, 173:1731-1738. [27] Varma A H, Ricles J M, Sause R, et al. Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns[J]. Journal of Constructional Steel Research, 2002, 58:725-758. [28] Varma A H, Ricles J M, Sause R, et al. Seismic behavior and design of high-strength square concrete-filled steel tube beam columns[J]. Journal of Structural Engineering, 2004, 130(2):169-179. [29] 张春梅,阴毅,周云.钢管高强混凝土柱抗震性能的试验研究[J].地震工程与工程振动, 2004, 24(4):86-89. [30] 李学平,吕西林,郭少春.反复荷载下矩形钢管混凝土柱的抗震性能I:试验研究[J].地震工程与工程振动, 2005, 25(5):95-103. [31] 李斌,马恺泽,刘惠东.方钢管高强混凝土柱抗震试验研究[J].工程力学, 2009, 26(增刊1):139-143. [32] 聂瑞锋,徐培蓁,阎宇.方钢管混凝土柱抗震性能试验研究和仿真分析[J].同济大学学报(自然科学版), 2012, 40(11):1596-1602. [33] Cai H, Xu L H, Chi Y, et al. Seismic performance of rectangular ultra-high performance concrete filled steel tube (UHPCFST) columns[J/OL]. Composite Structures, 2020, 259[2020-11-01].113242 https://doi.org/10.1016/j.construct.2020.113242. [34] 余志武,石挺丰,林松,等.钢管高性能混凝土柱抗震性能试验研究[J].工业建筑, 2003, 33(10):59-61. [35] Matsui C, Tsuda K, Yamaji Y, et al. Structural performance and axial load limit of concrete filled steel square tubular columns[J]. Journal of Structural&Construction Engineering, 1998, 63(504):103-110. [36] 邱增美,李帼昌,杨志坚.高强方钢管高强混凝土柱的抗震性能试验研究[J].建筑结构学报, 2021, 42(增刊2):295-303. [37] Mao X Y, Xiao Y. Seismic behavior of confined square CFT columns[J]. Engineering Structures, 2006, 28(10):1378-1386. [38] Xiao Y, He W H, Choi K. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering, 2005, 131(3):488-497. [39] 王英涛,蔡健,龙跃凌,等.带约束拉杆方形截面钢管混凝土短柱抗震性能试验研究[J].建筑结构学报, 2015, 36(7):18-25,34. [40] 梁江浩,吕西林,殷小溦,等.设置栓钉的方钢管混凝土柱抗震性能试验[J].结构工程师, 2012, 28(2):116-121. [41] 汪梦甫,杨冕.端部带肋方钢管混凝土柱抗震试验研究[J].湖南大学学报(自然科学版), 2017, 44(11):31-37. [42] 周绪红,甘丹,周政,等.斜拉肋加劲钢管混凝土结构的研究进展[J/OL].钢结构(中英文), 2024,39(1)[2023-12-02]. https://doi.org/10.13206/j.gjgS23071102. [43] 丁发兴.钢管混凝土轴压约束原理[M].北京:科学出版社, 2023. [44] Ding F X, Luo L, Wang L P, et al. Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns[J]. Journal of Constructional Steel Research, 2018, 144:135-152. [45] Ding F X, Liu Y C, Lyu F, et al. Cyclic loading tests of stirrup cage confined concrete-filled steel tube columns under high axial pressure[J/OL]. Engineering Structures, 2020, 221[2020-02-14]:111048. https://doi.org/10.1016/j.engstruct.2020.111048. [46] Zhang T, Ding F X, Liu X M, et al. Seismic behavior of terminal stirrup-confined concrete-filled elliptical steel tube columns:experimental investigation[J/OL]. Thin-Walled Structures, 2021,167[2021-08-10]:108251. https://doi.org/10.1016/j.tws.2021.108251. [47] Ding F X, Pan Z C, Lai Z C, et al. Experimental study on the seismic behavior of tie bar stiffened round-ended concrete-filled steel tube columns[J/OL]. Journal of Bridge Engineering, 2020, 25(10):04020071[2020-07-17]. https://doi.org/10.106/(ASCE)BE.1943-5592.0001611. [48] 丁发兴,刘怡岑,吕飞,等.拉筋接触方式对高轴压比钢管混凝土柱抗震性能影响试验研究[J].建筑结构学报, 2021, 42(9):62-72. [49] 中国工程建设标准化协会.钢-混凝土组合桥梁设计导则:T/CECS 888-2021[S].北京:中国计划出版社, 2021. [50] 聂建国,刘明,叶列平.钢-混凝土组合结构[M].北京:中国建筑工业出版社, 2005. [51] Mou B, Zhao F, Qiao Q Y, et al. Flexural behavior of beam to column joints with or without an overlying concrete slab[J/OL]. Engineering Structures, 2019, 199[2019-09-09]:109616. https://doi.org/10.1016/j.engstruct.2019.109616. [52] 聂建国,黄远,樊健生.考虑楼板组合作用的方钢管混凝土组合框架受力性能试验研究[J].建筑结构学报, 2011, 32(3):99-108. [53] Cheng C T, Chan C F, Chung L L. Seismic behavior of steel beams and CFT column moment-resisting connections with floor slabs[J]. Journal of Constructional Steel Research, 2007, 63(11):1479-1493. [54] 张冬芳,贺拴海,赵均海,等.考虑楼板组合作用的复式钢管混凝土柱-钢梁节点抗震性能试验研究[J].建筑结构学报, 2018, 39(7):55-65. [55] Kim Y J, Oh S H, Moon T S. Seismic behavior and retrofit of steel moment connections considering slab effects[J]. Engineering Structures, 2004, 26(13):1993-2005. [56] 李杨,李延涛,邢万里,等.钢管混凝土柱-双面组合作用梁框架节点抗震性能试验研究[J].工程力学, 2020, 37(7):99-109. [57] Li X, Xiao Y, Wu Y T. Seismic behavior of exterior connections with steel beams bolted to CFT columns[J]. Journal of Constructional Steel Research, 2009, 65(7):1438-1446. [58] Li R, Samali B, Tao Z, et al. Cyclic behaviour of composite joints with reduced beam sections[J]. Engineering Structures, 2017, 136:329-344. [59] 聂建国,秦凯,刘嵘.方钢管混凝土柱与钢-混凝土组合梁连接的内隔板式节点的抗震性能试验研究[J].建筑结构学报, 2006, 27(4):1-9. [60] Nie J G, Qin K, Cai C S. Seismic behavior of connections composed of CFSSTCs and steel-concrete composite beams:experimental study[J]. Journal of Constructional Steel Research, 2008, 64(10):1178-1191. [61] 徐桂根,聂建国.方钢管混凝土柱内隔板贯通式节点核心区抗震性能的试验研究[J].土木工程学报, 2011, 44(8):25-32. [62] 聂建国,秦凯.方钢管混凝土柱节点抗剪受力性能的研究[J].建筑结构学报, 2007, 28(4):8-17. [63] Han L H, Li W. Seismic performance of CFST column to steel beam joint with RC slab:experiments[J]. Journal of Constructional Steel Research, 2010, 66(11):1374-1386. [64] Li W, Han L H. Seismic performance of CFST column to steel beam joints with RC slab:Joint model[J]. Journal of Constructional Steel Research, 2012, 73:66-79. [65] Zhou Q S, Fu H W, Ding F X, et al. Seismic behavior of a new through-core connection between concrete-filled steel tubular column and composite beam[J]. Journal of Constructional Steel Research, 2019, 155:107-120. [66] Mirza O, Uy B. Behaviour of composite beam-column flush end-plate connections subjected to low-probability, high-consequence loading[J]. Engineering Structures, 2011, 33(2):647-662. [67] 王静峰,龚旭东,姜涛,等.钢管混凝土边柱与组合梁端板连接的抗震试验研究[J].土木工程学报, 2013, 46(11):44-53. [68] Wang J F, Zhang H J, Jiang Z. Seismic behavior of blind bolted end plate composite joints to CFTST columns[J]. Thin-Walled Structures, 2016, 108:256-269. [69] Wang J F, Zhang H J. Seismic performance assessment of blind bolted steel-concrete composite joints based on pseudo-dynamic testing[J]. Engineering Structures, 2017, 131:192-206. [70] Yu Y J, Nie X Z, Zhang C, et al. Seismic behavior of bottom-flange-bolted type through-diaphragm connection considering the slab effect[J/OL]. Engineering Structures, 2021, 229[2020-12-16]:111642. https://doi.org/10.1016/j.engstruct.2020.111642. [71] CEN. Eurocode 3:Design of steel structures-part 1-8:design of joints[S]. Brussels:CEN, 2005. [72] Ding F X, Chen Y B, Wang L P, et al. Hysteretic behavior of CFST column-steel beam bolted joints with external reinforcing diaphragm[J/OL]. Journal of Constructional Steel Research, 2021, 183[2021-05-13]:106729. https://doi.org/10.1016/j.jcsr.2021.106729. [73] 丁发兴,卫心怡,潘志成,等.高轴压比方形钢管混凝土柱-组合梁单边栓连刚接节点抗震性能试验研究[J].建筑结构学报:1-11. DOI: 10.14006/j.jzjgxb.2022.0015.,2023,44(7):105-115. [74] 樊健生,周慧,聂建国,等.双向荷载作用下方钢管混凝土柱-组合梁空间节点抗震性能试验研究[J].建筑结构学报, 2012, 33(6):50-58. [75] 樊健生,周慧,聂建国,等.空间钢-混凝土组合节点抗震性能试验研究[J].土木工程学报, 2014, 47(4):47-55. [76] Matsui C. Strength and behavior of frames with concrete filled square steel tubular columns under earthquake loading[C]//Proceedings of the International Speciality Conference on Concrete Filled Steel Tubular Structures. Harbin, China:[s.n.], 1985:104-111. [77] Kawaguchi J, Morino S, Sugimoto T. Elasto-plastic behavior of concrete-filled steel tubular frames composite construction[C]//Proceedings of an Engineering Foundation Conference. Irsee, Germany:ASCE, 1996:272-281. [78] Kawaguchi J, Morino S, Sugimoto T, et al. Experimental study on structural characteristics of portal frames consisting of square CFT columns[C]//Composite Construction in Steel and Concrete Ⅳ. Banff, Canada:ASCE, 2002:725-733. [79] 马万福.钢管混凝土单层框架动力性能的试验研究[D].哈尔滨:哈尔滨工业大学, 1998. [80] 钟善桐,张文福,屠永清,等.钢管混凝土结构抗震性能的研究[J].建筑钢结构进展, 2002, 4(2):3-15. [81] 李斌,薛刚,张园.钢管混凝土框架结构抗震性能试验研究[J].地震工程与工程振动, 2002, 22(5):53-56. [82] 王来,王铁成,陈倩.低周反复荷载下方钢管混凝土框架抗震性能的试验研究[J].地震工程与工程振动, 2003, 23(3):113-117. [83] 李忠献,许成祥,王冬,等.钢管混凝土框架结构抗震性能的试验研究[J].建筑结构, 2004, 34(1):3-6,38. [84] 王先铁,郝际平,周观根,等.两层两跨方钢管混凝土框架抗震性能试验研究[J].地震工程与工程振动, 2010, 30(3):70-76. [85] 聂建国,陈戈,孙传伟,等.钢-混凝土组合楼盖空间作用的试验研究[J].清华大学学报(自然科学版), 2005, 45(6):749-752. [86] Tagawa Y, Kato B, Aoki H. Behavior of composite beams in steel frame under hysteretic loading[J]. Journal of Structural Engineering, 1989, 115(8):2029-2045. [87] Nakashima M, Matsumiya T, Suita K, et al. Full-scale test of composite frame under large cyclic loading[J]. Journal of Structural Engineering, 2007, 133(2):297-304. [88] Nie J G, Huang Y, Yi W J, et al. Seismic behavior of CFRSTC composite frames considering slab effects[J]. Journal of Constructional Steel Research, 2012, 68(1):165-175. [89] 王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究[J].建筑结构学报, 2006, 27(3):48-58. [90] 王先铁,郝际平,周观根,等.方钢管混凝土柱-钢梁平面框架抗震性能试验研究[J].建筑结构学报, 2010, 31(8):8-14. [91] 余志武,蒋丽忠.钢-混凝土组合结构抗震及稳定性[M].北京:科学出版社, 2015. [92] 王静峰,王贾鑫,王冬花,等.半刚性钢管混凝土框架抗震性能试验研究[J].建筑结构学报, 2015, 36(增刊1):21-26,41. [93] Wang J F, Wang J X, Wang H T. Seismic behavior of blind bolted CFST frames with semi-rigid connections[J]. Structures, 2017(9):91-104. [94] Wang J F, Wang H T. Cyclic experimental behavior of CFST column to steel beam frames with blind bolted connections[J]. International Journal of Steel Structures, 2018, 18(3):773-792. [95] 王冬花,王静峰,李贝贝,等.装配式钢管混凝土组合框架的抗震性能试验研究[J].土木工程学报, 2017, 50(8):20-28,48. [96] 赵均海,胡壹,张冬芳,等.装配式复式钢管混凝土柱-钢梁框架抗震性能试验研究[J].建筑结构学报, 2020, 41(8):88-96. [97] Ren F M, Zhou Y, Zhang J B, et al. Experimental study on seismic performance of CFST frame structures with energy dissipation devices[J]. Journal of Constructional Steel Research, 2013, 90:120-132. [98] 王波,王静峰,孙政,等.屈曲约束支撑装配式钢管混凝土组合框架抗震试验性能研究[J].土木工程学报, 2018, 51(6):14-22. [99] 丁发兴,许云龙,王莉萍,等.拉筋对两层两跨钢-混凝土组合框架结构抗震性能的影响[J].工程力学, 2023, 40(4):58-70. [100] 宗周红,林东欣,房贞政,等.两层钢管混凝土组合框架结构抗震性能试验研究[J].建筑结构学报, 2002, 23(2):27-35. [101] Herrera R, Ricles J M, Sause R, et al. Seismic performance evaluation of steel moment resisting frames with concrete filled tube columns[C]//Proceeding of the International Workshop on Steel and Concrete Composite Construction (IWSCCC-2003). Taipei, TaiwanChina:[s.n.], 2003:143-152. [102] He W H, Xiao Y, Guo Y R, et al. Pseudo-dynamic testing of hybrid frame with steel beams bolted to CFT columns[J]. Journal of Constructional Steel Research, 2013, 88:123-133. [103] 完海鹰,杜维凤,冯然.方钢管混凝土柱-钢梁半刚性框架拟动力试验研究[J].工业建筑, 2015, 45(12):171-177. [104] 王静峰,潘学蓓,彭啸,等.两层钢管混凝土柱与组合梁单边螺栓端板连接框架拟动力试验研究[J].土木工程学报, 2016, 49(10):32-40. [105] 王静峰,彭啸,潘学蓓,等.钢管混凝土柱与钢梁单边高强螺栓端板连接框架拟动力试验[J].应用基础与工程科学学报, 2018, 26(5):1016-1026. [106] 王静峰,王翰斓,王涛,等.装配式中空夹层钢管混凝土组合框架混合动力试验研究[J].建筑结构学报, 2023, 44(4):237-246. [107] Tsai K C, Hsiao P C, Wang K J, et al. Pseudo-dynamic tests of a full-scale CFT/BRB frame:part I:specimen design, experiment and analysis[J]. Earthquake Engineering&Structural Dynamics, 2008, 37(7):1081-1098. [108] Tsai K C, Hsiao P C. Pseudo-dynamic test of a full-scale CFT/BRB frame-Part II:Seismic performance of buckling-restrained braces and connections[J]. Earthquake Engineering&Structural Dynamics, 2008, 37(7):1099-1115. [109] 郭玉荣,黄民元.防屈曲耗能支撑钢管混凝土柱-钢梁组合框架子结构拟动力试验研究[J].建筑结构学报, 2014, 35(11):62-68. [110] 黄襄云,周福霖.钢管混凝土结构地震模拟试验研究[J].西北建筑工程学院学报(自然科学版), 2000, 17(3):14-17. [111] 黄襄云,周福霖,徐忠根.钢管混凝土结构抗震性能的比较研究[J].世界地震工程, 2001, 17(2):86-89. [112] 杜国锋,徐礼华,许成祥,等.钢管混凝土框架结构抗震性能[J].哈尔滨工业大学学报, 2009, 41(10):123-128. [113] 邹万山,徐礼华.钢管混凝土框架结构模型抗震试验研究[J].三峡大学学报(自然科学版), 2009, 31(2):59-62. [114] 罗美芳.钢-混凝土组合框架振动台试验研究[D].湘潭:湖南科技大学, 2015. [115] 童菊仙.方形钢管混凝土框架抗震性能研究[D].武汉:武汉大学, 2005. [116] 童菊仙,徐礼华,凡红.方钢管混凝土框架模型振动台试验研究[J].工程抗震与加固改造, 2005, 27(3):65-69. [117] 陈建斌.高层建筑方钢管混凝土组合结构非线性地震反应分析理论与试验研究[D].上海:同济大学, 2005. [118] 吕西林,孟春光,田野.消能减震高层方钢管混凝土框架结构振动台试验研究和弹塑性时程分析[J].地震工程与工程振动, 2006, 26(4):231-238. [119] 李国强,胡大柱,孙飞飞.半刚性连接组合梁框架足尺模型模拟地震振动台试验[J].建筑结构学报, 2009, 30(5):39-47. [120] Han L H, Li W, Yang Y F. Seismic behaviour of concrete-filled steel tubular frame to RC shear wall high-rise mixed structures[J]. Journal of Constructional Steel Research, 2009, 65(5):1249-1260. [121] 武藤清.结构物动力设计[M].滕家禄,等,译.北京:中国建筑工业出版社, 1984. [122] 聂建国,陶慕轩.采用纤维梁单元分析钢-混凝土组合结构地震反应的原理[J].建筑结构学报, 2011, 32(10):1-10. [123] 聂建国,陶慕轩.采用纤维梁单元分析钢-混凝土组合结构地震反应的应用[J].建筑结构学报, 2011, 32(10):11-20. [124] 陶慕轩,丁然,潘文豪,等.传统纤维模型的一些新发展[J].工程力学, 2018, 35(3):1-21. [125] 丁发兴,潘志成,罗靓,等.水平地震下钢-混凝土组合框架结构极限抗震与强柱构造[J].钢结构(中英文), 2021, 36(2):26-37.
点击查看大图
计量
- 文章访问数: 307
- HTML全文浏览量: 44
- PDF下载量: 31
- 被引次数: 0