Research on Lateral Impact Resistance of Concrete-Filled Circular Steel Tubular Columns Stiffened with Encased with I-Section CFRP Profile
-
摘要: 钢管混凝土构件及其衍生的各种新型组合构件具有优异的力学性能和施工性能,被广泛应用于桥梁和建筑结构;将CFRP型材内置于钢管混凝土构件,提高了钢管混凝土构件承载力,降低了截面尺寸,其在桥梁以及高层建筑中具有较大的应用前景。但由于车辆与桥梁结构或建筑物之间的碰撞事故频发,建筑物和桥梁一旦破坏将对人类生活和基础设施系统造成灾难性后果,因此,研究该类构件的抗冲击性能尤为重要。然而现行设计规范对这类构件的冲击设计一般采用等效静力分析方法,这种方法忽略了真正的影响过程。因此,采用有限元分析软件ABAQUS揭示内置工字形CFRP型材圆钢管混凝土柱在侧向冲击作用下的动力响应。首先建立轴力与冲击耦合的内置CFRP型材圆钢管混凝土柱模型,并且基于现有的试验数据对其准确性进行验证;然后基于验证后的有限元分析模型获取的冲击力、位移、应力以及应变揭示侧向冲击作用下内置工字形CFRP型材圆钢管混凝土柱的破坏机理。在此基础上,探究了CFRP型材配置率、冲击速度、轴压比、长细比、含钢率、冲击方向等参数对内置CFRP型材的钢管混凝土构件抗冲击性能的影响。最后,探究了轴力与冲击耦合作用下内置CFRP型材圆钢管混凝土柱的耗能机制。研究结果表明:与普通钢管混凝土柱相比,内置工字形CFRP型材的圆钢管混凝土柱的侧向抗冲击性能显著提高,为充分发挥工字形CFRP型材利用率,建议工字形CFRP型材配置率在6.2%~7.4%之间;通过分析轴压比对其影响,发现轴压比低于0.5时,轴力加强了内置工字形CFRP型材圆钢管混凝土柱的抗侧向冲击能力;轴压比高于0.5时,轴力削弱了内置工字形CFRP型材圆钢管混凝土柱的抗侧向冲击能力;相同冲击速度下,内置工字形CFRP型材圆钢管混凝土柱的强轴方向的抗冲击性能要优于弱轴冲击方向,当冲击速度较大时,其对冲击荷载作用下的内置工字形CFRP型材圆钢管混凝土柱的弱轴方向的变形影响越大。钢管的塑性耗能是内置工字形CFRP型材圆钢管混凝土柱的主要耗能方式,虽然内置CFRP型材耗散的能量占总冲击能量的比例较小,但其提高了内置工字形CFRP型材圆钢管混凝土柱的抗变形能力。Abstract: Concrete-filled steel tubular(CFST) members and various new-typed composite members derived from them have excellent mechanical properties and construction properties and are widely used in bridges and buildings. Encasing the CFRP profile into CFST members improves the bearing capacity of CFST members and reduces the section size, which has a great application prospect in bridges and high-rise buildings. Collisions between vehicles and bridge structures or buildings are frequent, and the destruction of buildings and bridges will have catastrophic consequences for human life and infrastructure systems. So it is particularly inportant to study the impact resistance performance of such components.However, the current design code generally adopts the equivalent static analysis method for the impact design of such members, which ignores the real influence process. Therefore, the finite element analysis(FEA) software ABAQUS was used to reveal the dynamic response of the concrete-filled circular steel tubular columns stiffened with encased with I-section CFRP profile(CFCST-CFRP) under lateral impact. Firstly, a CFCST-CFRP model coupled with axial force and impact was established, and its accuracy was verified based on the existing test data. Then, based on the impact force, displacement, stress and strain obtained by the verified FEA model, the failure mechanism of the CFCST-CFRP column under lateral impact was revealed. On this basis, the effects of CFRP profile configuration rate, impact velocity, axial compression ratio, slenderness ratio, steel ratio and impact direction on the impact resistance of CFCST-CFRP columns were explored. Finally, the energy dissipation mechanism of the CFCST-CFRP column under the coupling of axial force and impact was also explored. The results show that compared with ordinary CFST columns, the lateral impact resistance of CFCST-CFRP columns is significantly improved, and to give full play to the configuration rate of I-shaped CFRP profiles, it is recommended that the I-shaped CFRP profiles configuration rate should be between 6.2% and 7.4%. By analyzing the influence of the axial compression ratio, it is found that when the axial compression ratio is lower than 0.5, the axial force strengthens the lateral impact resistance of CFCST-CFRP columns. While the axial pressure ratio exceeds 0.5, the axial force weakens the lateral impact resistance of CFCST-CFRP columns. Under the same impact velocity, the impact resistance of CFCST-CFRP columns in the strong axial direction is better than that of the weak shaft impact direction, and when the impact velocity is large, it has the greater the influence on the deformation of the CFCST-CFRP column under impact load. The plastic energy dissipation of the steel tube is the main energy consumption mode of the CFCST-CFRP column. Although the energy dissipated by the CFRP profile accounts for a small proportion of total impact energy, it improves the deformation resistance of the CFCST-CFRP column.
-
Key words:
- CFRP profile /
- concrete-filled steel tubular column /
- lateral impact /
- failure mechanism
-
[1] 钟善桐.钢管混凝土结构在我国的应用和发展[J].建筑技术,2001,32(2):80-82. [2] 钟善桐.钢管混凝土结构[M].3版.北京:清华大学出版社,2003. [3] 蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2007. [4] 黎小平,张小平,王红伟.碳纤维的发展及其应用现状[J].高科技纤维与应用,2005,30(5):24-30. [5] 叶列平.FRP加固混凝土结构的设计方法[C]//第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集.昆明:2002. [6] Alam M D,Fawzia S,Zhao X L,et al.Experimental study on FRP-strengthened steel tubularmembers under lateral impact[J/OL].Journal of Composites for Construction,2017,21(5).[2017-10-01] .http://10.1061/(asce)cc.1943-5614.0000801. [7] Alam M D,Fawzia S,Zhao X L,et al.Performance and dynamic behaviour of FRP strengthened CFST members subjected to lateral impact[J].Engineering Structures,2017,147:160-176. [8] 张倚天.冲击荷载下FRP约束方钢管混凝土短柱的动力性能研究[D].长沙:湖南大学,2019. [9] Saini D,Shafei B.Investigation of concrete-filled steel tube beams strengthened with CFRP against impact loads[J].Composite Structures,2019,208:744-757. [10] 陈忱.FRP钢管混凝土构件抗冲击性能研究[D].大连:大连海事大学,2016. [11] Chen Z,Wang J,Chen J,et al.Responses of concrete-filled FRP tubular and concrete-filled FRP-steel double skin tubular columns under horizontal impact[J/OL].Thin-Walled Structures,2020,155(3).[2020-07-15].http://10.1016/j.tws.2020.106941. [12] Wang W,Wu C,Yu Y,et al.Dynamic responses of hybrid FRP-concrete-steel double-skin tubular column (DSTC) under lateral impact[J].Structures,2021,32:1115-1144. [13] 李帼昌,张硕,杨志坚,等.内置CFRP工字形型材的方钢管混凝土偏压短柱有限元分析[J].钢结构,2018,33(6):66-71,88. [14] Li G C,Zhan Z C,Yang Z J,et al.Behavior of concrete-filled square steel tubular stub columns stiffened with encased I-section CFRP profile under biaxial bending[J].Journal of Constructional Steel Research,2020,169.[2020-06-01].http://10.1016/j.jcsr.2020.106065. [15] 李帼昌,李晓,杨志坚,等.内置工字形截面CFRP型材的方钢管混凝土构件抗侧向冲击性能研究[J].建筑结构学报,2021,42(增刊2):304-313. [16] 韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社,2017. [17] Norman J.Structural impact[M].Cambridge:Cambridge University Press,1997. [18] Cairns J.Model code 2010:first complete draft[M].Lausanne:Fédération Internationale Du béton,2010. [19] 周元鑫,江大志,夏源明.碳纤维静、动态加载下拉伸力学性能的试验研究[J].材料科学与工艺,2000,8(1):12-15. [20] 王潇宇,Cristoforo D,徐金俊,等.侧向冲击作用下钢管混凝土柱动力响应试验研究及计算方法[J].土木工程学报,2017,50(12):28-36. [21] 周冰.内置CFRP工字形型材的方钢管混凝土轴压短柱力学性能研究[D].沈阳:沈阳建筑大学,2015. [22] 中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014. [23] Sharma H,Hurlebaus S,Gardoni P.Performance-based response evaluation of reinforced concrete columns subject to vehicle impact[J].International Journal of Impact Engineering,2012,43:52-62.
点击查看大图
计量
- 文章访问数: 197
- HTML全文浏览量: 46
- PDF下载量: 10
- 被引次数: 0