Research on Lateral Stiffness of Embedded Wall Board Steel Frame Structure
-
摘要: 钢结构因其具有工厂化生产、抗震性能良好、可回收利用、绿色环保等优点,被广泛地运用于装配式建筑之中。在钢结构建筑中,内嵌围护墙板常作为钢框架结构建筑填充墙使用,但在现有的结构设计理论中,一般采用周期折减系数考虑内嵌围护墙板对钢框架结构抗侧刚度的影响,有时会造成模拟框架抗侧刚度与实际相差较大,不利于工程精细化设计,因此需要深入研究内嵌围护墙板对钢框架抗侧刚度的影响。在该背景下,为进一步研究内嵌围护墙板与钢框架在离散连接情况下,不同影响因素引起的钢框架结构抗侧刚度的变化,运用ABAQUS有限元软件建立带内嵌蒸压加气混凝土(ALC)墙板钢框架的结构模型,考虑了ALC墙板与框架梁连接、与框架柱连接以及与框架梁柱共同连接时,连接节点数量和墙板与钢框架的刚度比对带内嵌围护墙板钢框架结构(Embedded Wallboard Steel Frame Structure,简称EWSF结构)抗侧刚度的影响。
结果表明:EWSF结构的抗侧刚度与无墙板的钢框架相比有较大幅度的提高,根据不同的连接条件,其提高程度分别可达4倍以上;多参数分析结果显示连接工况的变化对EWSF结构整体抗侧刚度有较大的影响,随着连接节点数量的增多,ALC墙板与框架梁连接比与框架柱连接时EWSF结构初始抗侧刚度的提高更加明显;与ALC墙板和框架梁柱分别连接时的情况相比,ALC墙板与框架梁柱共同连接对提高EWSF结构抗侧刚度的效果更加显著;连接节点数量较少时,梁柱连接变化对EWSF结构抗侧刚度的影响较小;EWSF结构的抗侧刚度随墙板与钢框架刚度比的减小而增大。基于连接节点数量和刚度比等影响因素对结构初始抗侧刚度影响的模型分析和理论推导,分别引入墙板与钢框架完全刚接时结构初始抗侧刚度影响系数β和离散连接时结构初始抗侧刚度的影响系数α,提出了该结构初始抗侧刚度计算表达式,其计算结果与有限元分析结果相吻合。Abstract: Steel structure buildings have the characteristics of factory production, good seismic performance, recyclability, environmental protection and other characteristics. They are widely used in prefabricated buildings. In prefabricated steel structure buildings, embedded wallboards are often used as filling walls for steel frame structures. However, in the existing structural design theory, the period reduction factor is generally used to consider the influence of embedded wallboards on the lateral stiffness of steel frame structures. Sometimes, this causes a large difference between the simulated lateral stiffness of the frame and the actual stiffness, which is not conducive to refined engineering design. It is necessary to further study the influence of embedded wallboards on the lateral stiffness of steel frames. Therefore, in this context, in order to further study the changes of the lateral stiffness of steel frames caused by different influencing factors in the discrete connection between embedded wallboard and steel frame, ABAQUS finite element software was used to establish a structural model of steel frame with embedded autoclaved lightweight concrete(ALC) wallboard. The influence of the number of connection nodes and the stiffness ratio of the wallboard to the embedded wallboard steel frame structure(referred to as EWSF structure) was considered when connecting the ALC wallboard to the frame beam, the frame column, and the frame beam column together.
The results show that the lateral stiffness of EWSF structure is greatly improved compared with the steel frame structure without wallboard. According to different connection conditions, the improvement degree can reach 4 to 6 times. The results of multi parameter analysis show that the change of connection conditions has a greater impact on the overall lateral stiffness of EWSF structure. With the increase of the number of connection nodes, the initial lateral stiffness of EWSF structure when the ALC wallboard is connected to the frame beam increases more significantly than when it is connected to the frame column. Compared with the case when the ALC wallboard and the frame beam column are connected separately, the effect of the joint connection of the ALC wallboard and the frame beam column on improving the lateral stiffness of EWSF structure is more significant. When the structure has fewer connection nodes, the change of beam column connection has little effect on the lateral stiffness of EWSF structure. The lateral stiffness of EWSF structure increases with the decrease of the stiffness ratio of the embedded wallboard to the steel frame. Based on the model analysis and theoretical derivation of the influence of factors such as the number of connection nodes and the stiffness ratio on the initial lateral stiffness of the structure, the influence coefficient β of the initial lateral stiffness of the structure when the embedded wallboard is fully rigid connected to the steel frame and the influence coefficient α of the initial lateral stiffness of the structure when the embedded wallboard is discrete connected are introduced respectively. And the formula for calculating the initial lateral stiffness of the structure is proposed. The calculation result is consistent with the finite element analysis result, which can provide a certain reference for engineering design. -
[1] 胡精武,徐锋,杜东升,等.整体钢框架内嵌加气混凝土填充墙板足尺模型振动台试验研究[J].建筑结构学报,2018,39(6):141-148. [2] 侯和涛,周健,臧海涛,等.复合墙板与钢框架的连接节点抗震试验研究[J].工程力学,2014,31(10):85-91,115. [3] 王波,王静峰,李响,等.填充ALC墙板钢管混凝土框架抗震试验与数值模拟[J].土木工程学报,2014,47(增刊2):56-61. [4] 王小平,朱晓章,程雅蒙.轻钢框架-加气混凝土砌块组合墙体抗侧试验研究与分析[J].武汉理工大学学报,2016,38(6):66-72. [5] Liu Y S,Li G Q.Behavior of steel frames with and without AAC infilled walls subjected to static and cyclic horizontal loads[C]//Proceedings of the 13th World Conference on Earthquake Engineering.2004. [6] Asadzadeh S A,Mohammadi M,ATTARI N K A,et al.An experimental study on finding prequalified connectors between the wall and steel frame infilled with autoclave-cured aerated concrete blocks[J].Journal of Earthquake Engineering,2022,26(8):4085-4104. [7] 殷占忠,刘军,杨博,等.带PEC柱钢板剪力墙抗侧刚度的分析[J].哈尔滨工程大学学报,2022,43(3):392-398. [8] Mohammadi M,Nikfar F.Strength and stiffness of masonry-infilled frames with central openings based on experimental results[J].Journal of Structural Engineering,2013,139(6):974-984. [9] 龚超,贾明明,刘信,等.钢框架-嵌挂结合型密肋复合墙板整体性能研究[J].工程力学,2020,37(增刊1):121-129. [10] 常鹏,张凯,李强军.开洞对密肋复合墙体抗侧刚度的影响[J].华中科技大学学报(自然科学版),2015,43(11):127-132. [11] 孙国华,何若全,顾强,等.半刚接钢框架内填RC墙结构侧移刚度分析[J].沈阳建筑大学学报(自然科学版),2011,27(4):613-620. [12] 金晓飞,孟永杰,杨晓杰,等.内嵌围护墙板对钢框架抗侧力性能的影响效应[J].哈尔滨工业大学学报,2013,45(4):21-27. [13] 孟永杰.多层内嵌围护墙板钢框架抗侧力性能研究[D].哈尔滨:哈尔滨工业大学,2012. [14] 宋慧慧,王静峰,丁兆东,等.内嵌预制SVMFC夹芯复合墙板钢框架结构数值分析[J].合肥工业大学学报(自然科学版),2020,43(11):1538-1543. [15] 颜雪洲.轻质高性能混凝土力学性能试验研究及新型复合墙体性能分析[D].北京:北京交通大学,2006. [16] 中华人民共和国住房和城乡建设部.蒸压加气混凝土制品应用技术标准:JGJ/T 17-2020[S].北京:中国建筑工业出版社,2020. [17] 雷晴.ALC板填充墙RC框架结构数值模拟[J].山西建筑,2021,47(11):43-44. [18] 童岳生,钱国芳,梁兴文,等.砖填充墙钢筋混凝土框架的刚度及其应用[J].西安冶金建筑学院学报,1985,44(4):21-35.
点击查看大图
计量
- 文章访问数: 279
- HTML全文浏览量: 36
- PDF下载量: 25
- 被引次数: 0