留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆炸荷载作用下钢板混凝土夹芯砌体防爆墙的防护性能分析

胡宗波 魏敬徽

胡宗波, 魏敬徽. 爆炸荷载作用下钢板混凝土夹芯砌体防爆墙的防护性能分析[J]. 钢结构(中英文), 2023, 38(5): 33-42. doi: 10.13206/j.gjgS22102401
引用本文: 胡宗波, 魏敬徽. 爆炸荷载作用下钢板混凝土夹芯砌体防爆墙的防护性能分析[J]. 钢结构(中英文), 2023, 38(5): 33-42. doi: 10.13206/j.gjgS22102401
Zongbo Hu, Jinghui Wei. Analysis on Protective Performance of Explosion-Proof Wall with Masonry Sandwich Steel Plate Under Blast Load[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(5): 33-42. doi: 10.13206/j.gjgS22102401
Citation: Zongbo Hu, Jinghui Wei. Analysis on Protective Performance of Explosion-Proof Wall with Masonry Sandwich Steel Plate Under Blast Load[J]. STEEL CONSTRUCTION(Chinese & English), 2023, 38(5): 33-42. doi: 10.13206/j.gjgS22102401

爆炸荷载作用下钢板混凝土夹芯砌体防爆墙的防护性能分析

doi: 10.13206/j.gjgS22102401
基金项目: 

中国博士后科学基金(2020M683432)

武警工程大学基础前沿基金研究项目(WJY202015,WJY202229)。

陕西省自然科学基础研究计划(2023-JC-YB-419)

详细信息
    作者简介:

    胡宗波,男,1985年出生,博士,副教授。Email:huzongbo_1985@163.com

Analysis on Protective Performance of Explosion-Proof Wall with Masonry Sandwich Steel Plate Under Blast Load

  • 摘要: 为提升既有危化品库、弹药库等设施围护结构的抗爆性能,建立了一种钢板混凝土夹芯砌体防爆墙构造用于墙体改造。并采用数值模拟的方法,以未加固的砌体填充墙和基于钢板混凝土叠合式砌体防爆墙为研究对象,利用动力非线性有限元分析软件ABAQUS/Explicit开展爆炸荷载作用下砌体墙的动态响应试验研究。其中,砌筑墙体、现浇混凝土、爆炸当量(TNT)和夹芯钢板均为实体单元类型,钢筋网为梁单元类型;钢筋网嵌入现浇混凝土中,砌筑墙体、现浇混凝土、夹芯钢板之间均采用面-面接触;在接触属性中,采用罚函数(Penalty),摩擦系数为0.75,砌块间的黏结滑移采用指数损伤演变本构;结构模型采用完全约束类型对墙体底部与顶部进行约束,并采用精细有限单元划分网格,尺寸大小划分为0.01 m。通过对未加固和采用夹芯钢板混凝土叠合加固的砌体填充墙进行数值模拟研究,分析比较两种墙体在爆炸冲击作用下的动态响应和防护性能。结果表明:在同级爆炸荷载作用下,随着钢板厚度的增加,防爆墙体的刚度也随之增强,加速度峰值会不断提前;墙体瞬时速度最大值出现在0.1 ms前后,当钢板厚度小于10 mm时,受爆点中心速度大于58 m/s;当钢板厚度大于30 mm时,受爆点中心速度小于30 m/s。随着爆炸荷载的增加,防爆墙中心点的最大变形位移和稳定变形位移都会随之增加,加固后的钢板夹芯防爆砌体墙的瞬时位移随着钢板厚度的增加呈现减小的趋势。当钢板夹芯防爆墙的钢板厚度小于20 mm时,墙体的最大塑性位移大于0.015 m,当钢板厚度大于30 mm时,墙体的最大塑性位移小于0.008 m。由于夹芯钢板对墙体延性的提升,钢板夹芯砌体墙的损伤情况明显好于钢筋混凝土加固砌体墙。防爆墙的钢筋应变在爆炸冲击波的作用下瞬时拉压变形交替出现,其中心线随着爆炸荷载的增加和时间的推移呈上升趋势,防爆墙受爆中心点的钢筋拉压应变最大,钢板厚度的增加对于墙体边缘的钢筋拉压应变变化影响很小。加固后的钢板夹芯防爆砌体墙的抗爆性能受钢板厚度的影响,随着钢板厚度的增加,可以显著提升原砌体墙、混凝土加固砌体墙的抗爆性能。
  • [1] Johnson C F, Slawson T R. Concrete masonry unit walls retrofitted with elastomeric systems for blast loads[J]. Journal of Structural Engineering, 2004,130(7):1120-1128.
    [2] Louca W L A, Friis J. A passive impact protection system for existing profiled blastwalls[C]//Proceedings of OMAE' 0120th International Conference on Offshore Mechanics and Arctic Engineering. Riode Janeiro, Brazil:2001:663-667.
    [3] Galal K, Sasanian N. Out-of-plane flexural performance of GFRP reinforced masonry walls[J]. Journal of Composites for Construction, 2010, 14(2):162-174.
    [4] Xu Z, Baohan H, Cong X, et al. Dynamic response analysis of anti-explosion wall under dynamic loading modes[J]. Computer Aided Engineering, 2020, 29(2):39-45.
    [5] Zhang Z G, Cao H R, Li B L. Experimental study on protection effect of anti-blast wall under action of car bomb explosion[J]. Engineering Blasting, 2020, 26(4):81-88.
    [6] Zhang Z G, Cao H R, Gao T. Experimental on anti-penetration explosion of rapid assembling anti-blast wall[J]. Engineering Blasting, 2019, 25(5):1-6.
    [7] Baylot J T, Bullock B, et al. Blast response of lightly attached concrete masonry unit walls[J]. Journal of Structural Engineering, 2005, 131(8):1186-1193.
    [8] Cheng L J, Mcomb A M. Unreinforced concrete masonry walls strengthened with CFRP sheets and strips under pendulum impact[J]. Journal of Composites for Construction, 2010, 14(6):775-783.
    [9] Hrynyk T D, Myers J J. Out-of-plane behavior of URM arching walls with modern blast retrofits:experimental results and analytical model[J]. Journal of Structural Engineering, 2008, 134(10):1589-1597.
    [10] Mohammed I, Ahmed A, Alexander H, et al. Blast vulnerability evaluationof concrete masonry unit infill walls retrofitted with nanoparticl reinforcedpolyurea:modelling and parametric evaluation[C]//Structures Congress 2011. 2011:2126-2141.
    [11] Ye H, Li C, Qin F, et al. Study of CFRP retrofitted RC column under close-in explosion[J]. Engineering Structures, 2021, 227(15):1-23.
    [12] Riedel W, Thoma K, Hiermaier S, et al. Penetration of reinforced concrete by BETA-B- 500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Berlin:1999:315-322.
    [13] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. Hague:1983:541-547.
  • 加载中
计量
  • 文章访问数:  145
  • HTML全文浏览量:  27
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 网络出版日期:  2023-06-10

目录

    /

    返回文章
    返回