Study on the Influence of Chloride Ion Corrosion on Wind-Induced Vibration Response of Transmission Towers in Coastal Area
-
摘要: 滨海地区的输电塔结构长期遭受海洋腐蚀性大气环境的侵蚀,其构件有效承载面积因腐蚀而削减,力学性能逐渐降低;长期的环境腐蚀与滨海强风耦合作用下,输电塔结构的服役安全性及耐久性受到了严重威胁。为了准确刻画长期氯离子侵蚀对滨海输电塔线结构体系风致动力响应的影响机制,首先在实验室对输电塔角钢进行盐雾加速腐蚀试验,腐蚀时长分别设定为0,800,1 600,2 400 h;之后利用腐蚀后角钢制作拉伸试件并采用MTS试验机对其进行力学性能试验,探究腐蚀对角钢截面损失率以及力学性能退化的影响规律,构建腐蚀时长(截面损失率)与角钢力学性能参数的回归模型;最后基于修正的二次溯流模型来刻画腐蚀后角钢的本构模型,并采用SAP 2000有限元分析软件建立考虑腐蚀影响的输电塔结构有限元分析模型,开展输电塔线结构体系风振响应分析,探究滨海氯离子侵蚀对输电塔结构风振响应的影响机制。研究结果表明:随着氯离子侵蚀时间的增加,角钢力学性能呈逐渐下降趋势,在腐蚀时长为800 h时,极限强度退化率与屈服强度退化率分别为4.00%与3.01%,伸长率和弹性模量则分别下降了5.33%和7.02%;当腐蚀时长达到2 400 h后,极限强度退化率与屈服强度退化率相较于未腐蚀工况分别达到16.49%和15.22%,下降幅度显著,伸长率和弹性模量下降幅值分别达到9.74%与14.33%。通过对输电塔结构的动力分析发现,随着腐蚀累积,输电塔结构的自振频率呈逐渐下降趋势,在腐蚀时长达2 400 h时,输电塔结构的一阶自振频率相较于未腐蚀前下降了4.08%,且腐蚀对输电塔结构的高阶频率影响更加显著;对应于3种腐蚀工况(腐蚀时长分别为800,1 600,2 400 h)的输电塔结构风振位移响应和塔身杆件应力呈逐渐增加趋势,腐蚀时长达到2 400 h时,塔身顶部最大位移已达0.466 m,较未腐蚀工况时塔身顶部位移增幅达9.8%,杆件应力最大增幅达5.1%;4种工况在同一风荷载作用下最大应力值与其对应腐蚀时长下的屈服强度比分别为0.52、0.55、0.58和0.60。Abstract: Transmission tower structures in coastal areas suffer from the long-term erosion of the corrosive atmosphere, and the effective bearing area of its components is reduced due to corrosion, and the mechanical properties are gradually reduced. The service safety and durability of transmission tower structure are seriously threatened under the coupling action of long-term environmental corrosion and coastal wind. In order to accurately characterize the mechanism of long-term chloride ion erosion on the wind-induced dynamic response of the coastal transmission tower structure system, this study first uses the laboratory to conduct accelerated salt spray corrosion tests on the transmission tower angles, the corrosion duration is set to 0 h, 800 h, 1 600 h and 2 400 h respectively. Then, tensile specimens were made of corroded angle steel and mechanical properties were tested by MTS testing machine to explore the influence of corrosion on the cross section loss rate and mechanical properties degradation of angle steel, and to build a regression model of corrosion duration(cross section loss rate) and mechanical properties parameters of angle steel. Finally, the constitutive model of corroded angle steel was described based on the modified secondary flow tracing model, and the finite element analysis software Sap2000 was used to establish the finite element analysis model of transmission tower structure considering the influence of corrosion. Wind-induced vibration response of transmission tower line structure system was analyzed to explore the influence mechanism of coastal chloride ion erosion. The results show that: with the increase of chloride ion erosion time, the mechanical properties of angle steel showed a gradual decline trend. When the corrosion time was 800 h, the ultimate strength and yield strength degradation rate were 4.00% and 3.01%, respectively, the elongation and elastic modulus of angle steel decrease by 5.33% and 7.02%, respectively. When the corrosion time reached 2 400 h, the degradation rates of both reached 16.49% and 15.22%, respectively, compared with the non-corrosion condition. After 2 400 h of corrosion, the decreasing amplitudes reach 9.74% and 14.33%, respectively. Through the dynamic analysis of transmission tower structure, it is found that with the accumulation of corrosion, the natural vibration frequency of transmission tower structure decreases gradually. When the corrosion is as long as 2 400 h, the first-order natural vibration frequency of the transmission tower structure decreases by 4.08% compared to non-corrosion condition, and the corrosion has a more significant effect on the high-order frequency of transmission tower structure. Corresponding to the three corrosion conditions(corrosion time is 800 h, 1 600 h and 2 400 h), the wind vibration displacement response of the transmission tower structure and the stress of the tower rod show a gradual increasing trend. When the corrosion time reaches 2 400 hours, the maximum displacement of the tower top reaches 0.466 m, which increases by 9.8% compared with the non-corrosion condition. The maximum increase of rod stress is 5.1%. The yield strength ratios of the maximum stress under the same wind load and the corresponding corrosion time under the four conditions are 0.52, 0.55, 0.58 and 0.60, respectively.
-
[1] 张卓群,李宏男,李士锋,等.输电杆塔在风沙荷载激励下的动力响应分析[J].东南大学学报(自然科学版),2018,48(3):506-511. [2] Li H N,Bai H F.High-voltage transmission tower-line system subjected to disaster loads[J].Progress in Natural Science,2006,16(9):899-911. [3] Diana G,Bruni S,Cheli F,et al.Dynamic analysis of the transmission line crossing “Lago de Maracaibo”[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,74:977-986. [4] 李宏男,王前信.大跨越输电塔体系的动力特性[J].土木工程学报,1997(5):28-36. [5] 樊志彬,李辛庚.输电杆塔钢构件腐蚀防护技术现状和发展趋势[J].山东电力技术,2013 (1):30-34. [6] 唐毅,宋爱民.盐雾试验条件对试验结果的影响[J].微电子学,2009,39(2):289-292. [7] 金伟良,夏晋,王伟力.锈蚀钢筋混凝土桥梁力学性能研究综述(Ⅰ)[J].长沙理工大学学报(自然科学版),2007 (2):1-12. [8] 魏源,吴兆旗,姜绍飞.腐蚀钢材力学性能退化规律研究[C]//中国钢结构协会结构稳定与疲劳分会第16届(ISSF-2018)学术交流会暨教学研讨会论文集.青岛:2018. [9] 高岩,黄殷辉,郑志军,等.Q235钢在广东省输电杆塔现场的大气腐蚀行为[J].华南理工大学学报(自然科学版),2018,46(7):39-46. [10] 石永久,王萌,王元清.结构钢材循环荷载下的本构模型研究[J].工程力学,2012,29(9):92-98,105. [11] 徐善华,王皓,苏磊.中性盐雾腐蚀环境中Q235钢板力学性能的退化规律[J].机械工程材料,2016,40(5):86-91. [12] 张卓群,李宏男,李东升,等.高压输电塔结构的疲劳寿命分析[J].电力建设,2014,35(1):14-18. [13] Simiu E,Scanlan R H.Wind effects on structures:fundamentals and applications to design[M].New York:John Wiley,1996. [14] 国家能源局.架空输电线路杆塔结构设计技术规定:DL/T 5154—2012[S].北京:中国计划出版社,2012.
点击查看大图
计量
- 文章访问数: 186
- HTML全文浏览量: 30
- PDF下载量: 9
- 被引次数: 0