Load Bearing Capacity and Economic Analysis of Cold-Formed Stiffened High-Strength Steel Beams
-
摘要: 随着炼钢技术的进步,高强钢材在建筑领域逐渐得到应用。相比于普通钢材,高强度钢材具有节约钢材、减小截面尺寸、减轻结构重量、提高抗震性能等优点。对于宽厚比较大的板件,在压力作用下易发生局部屈曲从而降低了构件的承载能力。而设置加劲肋改变了原板件的受力性能和屈曲行为,可以提高被加劲板件的综合刚度,且冷弯加劲具有制作方便、加工成本低的优势。为了探明采用冷弯半圆形加劲的高强度钢梁的受力性能及经济性,采用ABAQUS有限元模型,并与两端夹支、跨中单点加载的H形钢梁试验结果进行对比,验证有限元模型的准确性后,建立翼缘和腹板加劲的H形和箱形截面钢梁受弯分析模型。分别选择4种截面尺寸的H形截面钢梁考察翼缘加劲对钢梁强度和稳定承载力的影响大小,对H形、上翼缘加劲、上下翼缘均加劲的三种截面类型进行数值模拟,对比不同截面形式钢梁受弯强度承载力,通过改变上下翼缘厚度,得到与Q355级H形截面钢梁极限承载力相同时翼缘的厚度,得出不同尺寸情况下相应的用钢量减少比例。分别对H形和箱形腹板设置加劲肋的钢梁截面进行尺寸优化,在保持截面用钢量不变的情况下增加翼缘厚度,对比不同优化截面尺寸时Q355级腹板加劲截面相比于不加劲H形截面钢梁的受弯强度承载力;通过优化的截面尺寸,得到相同承载力时加劲高强Q690钢梁相比于Q355钢梁用钢量的节约程度。研究表明:H形钢梁上翼缘朝外加劲与朝内加劲相比具有更高的受弯强度承载力,翼缘加劲会显著降低整体失稳承载力;相同截面面积的翼缘加劲Q690钢梁比Q355钢梁受弯强度承载力提高1倍以上,相同强度承载力的翼缘加劲,Q690钢梁比Q355钢梁用钢量节约50%左右;腹板减薄厚度且设置一个加劲肋,保证用钢量不变的情况下增加翼缘厚度,钢梁受弯强度承载力更高;H形Q690钢梁采用优化截面时在保证承载力与Q355钢梁相等的情况下,节省用钢量40%左右;箱形Q690钢梁采用优化截面时在保证承载力与Q355钢梁相等的条件下,节省用钢量30%左右。Abstract: With the progress of steel-making technology, high-strength steel is gradually applied in the construction field. Compared with ordinary steel, high-strength steel has the advantages of saving steel, reducing section size, reducing structural weight, and improving seismic performance. Local buckling is easy to occur for wide and thick plates under pressure, which reduces the bearing capacity of the members. The setting of stiffening ribs can change the mechanical properties and buckling behavior of the original plate, improve the comprehensive rigidity of the stiffened plate, and the cold-formed stiffening has the advantages of easy production and low processing costs. In order to investigate the load bearing capacity and economy of high-strength steel beams with cold-formed semi-circular stiffeners, the bending analysis model of H-shaped and box-section steel beams with flange and web stiffening was established after verifying the accuracy of the finite element model by comparing the test results of H-shaped steel beams clamped at both ends and loaded at a single point in the mid-span. Four H-section steel beams with different section sizes were selected to investigate the influence of flange stiffening on the strength and stable bearing capacity of steel beams. Three section types, namely, H-section, upper flange stiffening, and both upper and lower flanges stiffening, were simulated by numerical simulation, and the bending strength bearing capacity of steel beams with different section types was compared. By changing the thickness of upper and lower flanges, the thickness of flanges was obtained when the ultimate bearing capacity of steel beams with grade Q355 H-section was the same. The corresponding proportion of steel quantity reduction under different sizes was obtained. The cross-sections of steel beams with stiffened ribs in H-shaped and box-shaped webs were optimized by increasing the thickness of the flanges while keeping the steel consumption of the cross-section unchanged, and comparing the flexural strength load capacity of the stiffened cross-section of Q355 grade webs with that of the unstiffened H-shaped cross-section steel beams for different optimized cross-section sizes.By optimizing the section size, when the same load bearing capacity was obtained, the amount of steel used in the stiffened high-strength Q690 steel beam was less than that of Q355 steel beam. The results show that the upper flange of H-shaped steel beam stiffened outward has higher flexural strength bearing capacity than that stiffened inward, and the flange stiffened will significantly reduce the overall instability bearing capacity; the flexural strength bearing capacity of flange stiffened Q690 steel beam with the same cross-sectional area is more than twice that of Q355 steel beam, and the steel consumption of flange stiffened Q690 steel beam with the same strength bearing capacity is about half that of Q355 steel beam; the thickness of the web is reduced and a stiffener is added to ensure that the flange thickness is increased under the condition of constant steel consumption, and the strength failure bearing capacity of the steel beam is higher; H-shaped Q690 steel beam adopts optimized section, which saves about 40% of steel consumption under the condition of ensuring that the bearing capacity is equal to that of Q355 steel beam; the box Q690 steel beam adopts optimized section, and the steel consumption can be saved by about 30% under the condition of ensuring that the bearing capacity is equal to that of Q355 steel beam.
-
[1] 周绪红.冷弯型钢结构研究进展[J].钢结构(中英文),2020,35 (1):1-19. [2] Ban H Y,Shi G,Shi Y J,et al.Research progress on the mechanical property of high strength structural steels[J].Advanced Materials Research,2011,250-253:640-648. [3] Cao X,Xu Y,Kong Z,et al.Residual stress of 800 MPa high strength steel welded T section:experimental study[J].Journal of Constructional Steel Research,2017,131:30-37. [4] 葛建舟,黄学伟,赵军,等.Q690D高强钢基于循环微孔扩展模型的断裂预测分析[J].钢结构(中英文),2021,36 (7):18-28. [5] 王彦博,李国强,陈素文,等.Q460高强钢焊接H形柱轴心受压极限承载力参数分析[J].建筑钢结构进展,2013,15 (5):8-13. [6] 申红侠,任豪杰.高强钢构件稳定性研究最新进展[J].建筑钢结构进展,2017,19 (4):53-62,92. [7] 李翔,王卫永,于克强.高温下轴心受压高强Q690钢柱的局部稳定[J].建筑钢结构进展,2021,23 (3):54-63. [8] Khan M,Paradowska A,Uy B,et al.Residual stresses in high strength steel welded box sections[J].Journal of Constructional Steel Research,2016,116:55-64. [9] Yang B,Nie S,Xiong G,et al.Residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates[J].Journal of Constructional Steel Research,2016,122:261-273. [10] Li T J,Li G Q,Wang Y B.Residual stress tests of welded Q690 high-strength steel box-and H-sections[J].Journal of Constructional Steel Research,2015,115:283-289. [11] Jiang J,Chiew S P,Lee C K,et al.An experimental study on residual stresses of high strength steel box columns[J].Journal of Constructional Steel Research,2017,130:12-21. [12] 熊晓莉,王田,谌磊.国产Q460高强钢焊接T形截面残余应力分布试验研究[J].建筑钢结构进展,2021,23 (9):42-53. [13] 刘梅,张露露,王培军,等.闭口加劲薄壁铝合金轴压构件局部屈曲性能试验研究[J].建筑结构学报,2015,36 (7):81-90. [14] 袁霖,张其林,罗晓群.球头加劲铝合金轴压构件的局部稳定设计方法分析[J].建筑结构学报,2021,42 (4):185-193. [15] 赵秋,翟战胜,陈宝春,等.U形肋加劲板局部稳定性试验研究[J].建筑结构学报,2017,38 (7):156-163. [16] 刘连杰,惠颖.设加劲肋防止畸变屈曲卷边Z型钢梁的性能研究[J].钢结构(中英文),2019,34 (12):26-30. [17] 张洋.双肢拼合弓形冷弯薄壁型钢闭合截面梁受弯承载力研究[D].西安:长安大学,2021. [18] 翟战胜.混合钢U肋加劲板受压稳定性能与设计方法研究[D].福州:福州大学,2016. [19] 姜洪阳.钢箱梁受压加劲板设计方法研究[D].西安:长安大学,2013. [20] 李文岭,何保康.帽形中间加劲肋纯压作用下加劲性能的有限条分析[J].西安建筑科技大学学报(自然科学版),2004 (4):424-429. [21] 李国俊.高强冷弯薄壁型钢方形加劲截面轴压柱直接强度法研究[D].西安:西安建筑科技大学,2007. [22] 杨钰,刘占科.翼缘加劲与未加劲C形轴压构件畸变屈曲临界应力计算简式[J].建筑钢结构进展,2021,23 (6):71-77,92. [23] 陈绍蕃.钢结构设计原理[M].北京:科学出版社,2016. [24] 熊刚.Q460GJ钢焊接H型钢梁整体稳定性能研究[D].重庆:重庆大学,2018. [25] 中华人民共和国住房和城乡建设部.钢结构工程施工质量验收标准:GB 50205—2020[S].北京:中国计划出版社,2020. [26] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2018.
点击查看大图
计量
- 文章访问数: 261
- HTML全文浏览量: 74
- PDF下载量: 11
- 被引次数: 0