Mechanism, Research Advances and Prospect of Steel for Cryogenic Service
-
摘要: 钢材低温脆断是钢结构工程面临的一大挑战,严重威胁低温环境下的结构安全。低温钢因其低温韧性较好,韧-脆转变温度较低,被广泛应用于各种液态气体储罐、管道及低温环境中的设备等。为全面了解低温钢的性能特点、冷脆机理和发展现状,介绍了低温钢的概念和国内外规范中相关规定,总结了低温韧-脆转变的经典理论,包括经典力学理论、晶格位错理论、能量理论和统计理论,并基于晶格位错理论详细阐述了低温下钢材性能变化的微观机理,分析了钢材韧-脆转变的主要影响因素以及低温下钢材的韧化机理及措施,明晰了当前低温钢研发的主要思路;此外,还介绍了当前低温钢的总体分类和产品系列。目前低温钢研发工作主要针对Ni系低温钢和高锰奥氏体低温钢,通过对比国内外标准中关于各类Ni系低温钢的化学成分含量及性能要求,介绍了我国低温钢的发展现状,并结合南极工程,对我国当前主要低温钢材用于建筑结构提出了设想,以进一步促进低温钢材料和结构应用的发展。Abstract: The low-temperature brittle fracture of steel is a major challenge in steel structure engineering, which threatens the safety of structures in low-temperature environments. Cryogenic steel is widely used in various liquid gas storage tanks, pipelines and equipment serving in low-temperature environments because of its good low-temperature toughness and low toughness-brittle transition temperature. For better understanding its performance characteristics, brittleness mechanism and product development of the cryogenic steel, a review of research progress available in the literature is conducted herein. First, the concept and regulations of cryogenic steel were introduced in this paper. Then, four main theories about toughness-brittle transition were summarized, namely classical mechanics theory, lattice dislocation theory, energy theory and statistical theory. Based on the lattice dislocation theory, the micro mechanism of the change in steel properties at low temperatures was explained in detail, the main influencing factors of toughness-brittle transition, and the toughening mechanism and measures of steel at low temperatures were analysed, and the main ideas of research and development of the cryogenic steel were clarified. Finally, the current general classification and product series of cryogenic steel were introduced herein. At present, the research and development of the cryogenic steel are mainly focused on Ni-containing cryogenic steel and high-manganese austenitic cryogenic steel. The chemical composition content and performance requirements of different content Ni-containing cryogenic steel in domestic and foreign standards were compared, and the types of cryogenic steel commonly used in the field of containers in China were summarized. Combined with the Antarctic Projects, an idea was put forward for the use of cryogenic steel in building structures in China to further promote the application of cryogenic steel materials and structures.
-
[1] 王元清,冯宝锐,石永久,等.考虑低温冷脆钢结构构件的实用简化设计方法[J].钢结构,2008,23(12):1-5. [2] 李先林.南极泰山科考站结构设计[J].建筑结构,2017,47(7):30-32. [3] 孙弘历,段梦凡,赵海湉,等.国内外南极科考站建筑节能策略[J].建筑节能,2020,48(9):1-7. [4] Verma V K,Krueger S P.Selection of appropriate materials at the south pole for the 9-meter full motion antenna[C]//Proceedings of the Ninth Biennial ASCE Aerospace Division International Conference.Houston:United States,2004:759-766. [5] 张文锋.不同热处理工艺对09MnNiDR钢显微组织和力学性能的影响[D].上海:上海交通大学,2015. [6] 中华人民共和国国家质量监督检验检疫总局.压力容器:第1部分:通用要求:GB 150.1-2011[S].北京:中国标准出版社,2011. [7] 邱正华,张桂红,吴忠宪.低温钢及其应用[J].石油化工设备技术,2004,25(2):43-46. [8] 张丽红,陈芙蓉.低温钢及其低温韧性研究现状[J].电焊机,2020,50(12):88-91. [9] 史伟,赵江涛,王顺花,等.12Cr2Mo1R钢的韧脆转变机理[J].金属热处理,2015,40(2):110-113. [10] 陈航,杨莉.韧脆转变临界事件的探讨[J].甘肃科技,2005(9):88-90. [11] Kawasaki T,Nakanishi S,Sawaki Y,et al.Fracture toughness and fatigue crack propagation in high strength steel from rom temperature to -180℃[J].Engineering Fracture Mechanics,1975,7(3):465-472. [12] 王元清,廖小伟,贾单锋,等.钢结构的低温疲劳性能研究进展综述[J].建筑钢结构进展,2018,20(1):1-11. [13] 薛春芳,王新华,辛义德.含铌微合金钢强韧化机理[J].金属热处理,2003,28(5):15-17. [14] 甘晓龙,岳江波,杜涛,等.钛铌微合金化钢强韧化机理研究[J].热加工工艺,2013,42(22):89-91. [15] 王璐.铌和热处理工艺对低温钢组织和性能的影响[D].郑州:郑州大学,2011. [16] 孟根巴根.9Ni钢焊接材料及接头组织和性能研究[D].包头:内蒙古工业大学,2009. [17] 王璐达.低温钢焊接接头性能及强韧机理分析[D].上海:上海交通大学,2014. [18] 许立雄,武会宾,牟丹.两相区淬火对7Ni钢微观组织和力学性能的影响[J].材料工程,2018,46(8):113-119. [19] Zhao X Q,Pan T,Wang Q F,et al.Effect of intercritical quenching on reversed austenite formation and cryogenic toughness in QLT-processed 9% Ni steel[J].Journal of Iron and Steel Research International,2007,14(5):240-244. [20] 张勇.低温压力容器用钢的现状与发展概况[J].压力容器,2006(4):31-34. [21] 黄维,高真凤,张志勤.Ni系低温钢现状及发展方向[J].鞍钢技术,2013(1):10-14. [22] ASME.Specification for pressure vessel plates,alloy steel,nickel:ASME SA-203/SA-203M[S].New York:ASME,2002. [23] 日本工业标准调查会.低温服役用镍系钢板:JIS G 3127[S].东京:日本标准协会,2005. [24] BSI.Flat products made of steels for pressure purposes-Part 4:Nickel alloy steels with specified low temperature properties:BS EN 10028-4:2003[S].London:BSI,2003. [25] 中华人民共和国国家质量监督检验检疫总局.低温压力容器用钢板:GB 3531-2014[S].北京:中国标准出版社,2014. [26] ISO.Steel flat products for pressure purposes-technical delivery conditions-Part 4:Nickel-alloy steels with specified low temperature properties:ISO 9328-4:2018[S].Geneva:ISO,2018. [27] ASTM.Standard specification for pressure vessel plates,alloy steel,quenched and tempered 7,8,and 9% Nickel:ASTM A553/A553M:2017[S].Commonwealth of Pennsylvania:ASTM,2017. [28] BSI.Steels for pressure purposes part 2:specification for alloy steels:plates:BS 1501-2:1988[S].London:BSI,1988. [29] 王德庆.高锰奥氏体低温钢的组织与性能[J].低温与特气,1984(3):27-37. [30] 中国特钢企业协会.低温压力容器用高锰奥氏体钢板:T/SSEA 0060-2020[S].北京:冶金工业出版社,2020.
点击查看大图
计量
- 文章访问数: 574
- HTML全文浏览量: 78
- PDF下载量: 34
- 被引次数: 0