Stress Analysis of Ultra-Wide Orthotropic Steel Box Girder with Large Width-Span Ratio and Single Inclined Pylon
-
摘要: 独塔斜拉桥的几何非对称特性导致其应力和变形不同于一般同类桥,大宽跨比正交异性钢箱梁的薄壁结构使得其受力及变形更为复杂,用常规方法难以精确给出变形和应力值。贾鲁河大桥即是这样一个例子,而且复杂性进一步增加。120 m的主跨分成三部分:从主塔开始的100m是正交异性钢箱梁,紧接的8m过渡段与12m的混凝土梁段衔接,后者系从对岸墩台伸出的悬臂段。由于钢箱梁宽度达54.8m,且未直接支撑在对岸桥墩上,而是通过一个8m长、54.8m宽的过渡梁段间接与混凝土伸臂梁连接,属于小范围内刚度不同的三种材料的连接,由此形成的两道连接缝不但削弱了结构的整体性,而且使对准和控制环节多,进一步增加了施工控制的难度。
研究表明:钢箱梁横向变形基本一致,最大横向变形相对差值为-2.8 mm,施工时可不设横向预拱度;自重作用引起的钢箱梁最大Mises应力为93.7 MPa,二期恒载和活载作用下的最大Mises应力约为自重引起的1/4,表明钢箱梁应力具有较大的安全富余度;当U肋高度在260~320 mm范围变化时,桥面系位移变化幅度不超过5%,桥面板最大应力变化幅度不超过8%,此范围内U肋高度变化对桥面系位移和应力的影响均较小,内在原因是U肋的高低变化与横梁能提供的刚度是互补的,正好说明该正交异性钢箱梁具有显著的板的特征,设计上宜采用此范围内的U肋高度。Abstract: Geometrical asymmetry in cable-stayed bridges with single pylon leads to differences in stresses and deformation in comparison to conventional ones. Thin-walled orthotropic steel girder with big width/span ratio has more complicated loading and deformation performance, which cannot be calculated accurately using conventional approaches. Jialuhe bridge is such an example with even more complicated properties. The 120 m long main span consists of three segments:The first 100 m from the pylon is orthotropic steel girder, followed by 8 m transition segment, and the last 12 m reinforced concrete plate is a cantilever from the abutment on the opposite bank. The width of the steel girder is 54.8 m, not supported on the abutment directly, but connected to the cantilever through a transitional segment with 8×54.8 m side length instead. So there are three materials of different stiffness connected in a small space, leading to two seaming sections, which not only reduces the monolith of the structure, but also increases difficulties in construction controlling.
The investigate shows:The transverse deformation of the steel girder is identical, with a maximal relative difference of-2.8 mm, so that no transverse camber is needed in construction phase. The maximal Mises stress due to gravity is 93.7 MPa, and that due to secondary deadload is about 1/4 of this value. This reveals a big safety reserve of the steel girder. When the height of the U-stiffeners varies between 260~320 mm, the variation of displacements of the bridge deck lies within 5%, variation of maximal stresses of the bridge deck within 8%. In this range the variation of the height of the U-stiffeners has less impact on displacement and stress of the deck. The internal cause is that the height of U-stiffener and the stiffness delivered by the transverse girder are supplementary each other, just demonstrating the salient plate property of this orthotropic girder. Height of U-stiffeners in this range should be chosen when designing. -
[1] 王春生, 冯亚成. 正交异性钢桥面板的疲劳研究综述[J]. 钢结构, 2009, 24(9):9-12. [2] 小西一郎. 钢桥第一分册[M]. 朱立冬, 等, 译. 北京:人民铁道出版社, 1980. [3] Wolchuk R. Empirical design rules for effective utilization of orthotropic decks[J]. Jourmal of Bridge Engineering, 2014, 19:152-158. [4] Walter R, Olesen J F. Analysis of an orthotropic deck stiffened with a cement based overlay[J]. Jourmal of Bridge Engineering, 2007(6):350-363. [5] 孔祥福, 周绪红, 狄谨, 等. 钢箱梁斜拉桥正交异性桥面板的受力性能[J]. 长安大学学报, 2007, 27(3):52-56. [6] 樊启武. 正交异性桥面系第二体系应力计算方法研究[D]. 成都:西南交通大学, 2005. [7] 邢中凯. 钢箱梁正交异性桥面板受力特性及计算方法分析研究[D]. 上海:同济大学, 2003. [8] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京:清华大学出版社, 1997. [9] 宁立. 斜拉桥扁平钢箱梁混合有限元分析[J]. 中外公路, 2009(10):119-122. [10] 兰枢灵. 薄壁钢箱梁计算方法研究[D]. 西安:长安大学, 2011. [11] 苏庆田. 斜拉桥扁平钢箱梁的有限混合单元法分析[J]. 同济大学学报, 2005(6):473-478. [12] 白海涛, 王端宜. 钢桥面铺装病害特点及设计要点分析[J]. 公路交通科技, 2007(1):123-128. [13] 狄谨. 钢箱梁梯形加劲板受力性能与设计方法研究[D]. 西安:长安大学, 2009.
点击查看大图
计量
- 文章访问数: 300
- HTML全文浏览量: 101
- PDF下载量: 14
- 被引次数: 0