Experimental Study on Force Transmission of Squeeze Bolt in the Anti-Pull Support of Nuclear Containment
-
摘要: 我国AP/CAP系列第三代先进核电厂房建造过程中采用的开顶式施工方式,便于设备吊装,且保证了设备与模块安装和施工在恶劣天气下的连续性。为保证开顶式施工的顺利进行,临时开合顶盖在核电厂房整个建造过程中需经历三次爬升,且为便于在同一厂址内重复使用,临时顶盖必须可拆卸。同时,顶盖可能会遭遇17级台风,台风产生的巨大上拔力要靠顶盖与安全壳的抗拔支座进行抵抗。而挤压式螺栓为抗拔支座中的关键传力构件,抗拔支座通过旋入以竖向钢板为支撑的挤压式螺栓,使传力构件与安全壳产生挤压,进而产生静摩擦力,提供抗拔力。抗拔支座中的挤压式螺栓与传统夹紧式螺栓传力方式类似,螺栓传力与各接触面的相对粗糙程度、螺栓直径和螺栓构造相关,但目前还没有相关理论可以确定挤压式螺栓在传力过程中拧紧扭矩与螺栓挤压力的关系。
针对以上问题,对挤压式螺栓传力进行试验研究:首先针对不同传力构件及接触面不同粗糙程度,设计了摩擦块接触试验、套筒-摩擦块接触试验和平头螺栓接触试验,验证了设置摩擦块及套筒的必要性,提出了球面端头螺栓的改进方法;然后通过采用定扭矩型电动扳手进行分级加载,得到了直接建立电动扳手档位和螺栓挤压力关系的方法;最后根据摩擦块与套筒完全约束和球面端头螺栓与安全壳直接接触两组试验结果,进一步提出改进螺栓传力的方法,并间接求得摩擦块与安全壳的动摩擦系数。
研究得出:1)摩擦块和套筒的设置使抗拔支座在安装和使用的过程中对安全壳损伤最小。在设计螺栓传力构件时,球面端头螺栓需设计成椭球形,与套筒槽接近点接触,且不需考虑螺纹孔板厚对螺栓传力的影响;2)直接建立的电动扭矩扳手档位与挤压力的关系,对电动扭矩扳手的工程应用提供借鉴;3)得到的摩擦块与模拟安全壳之间的动摩擦系数,可为抗拔支座的抗拔力确定提供参考。Abstract: The construction of AP/CAP series third-generation advanced nuclear power plants in China adopts an open-top construction method to facilitate equipment hoisting and ensure the continuity of equipment and module installation and construction in severe weather. The temporary opening and closing of the roof guarantee the smooth progress of the open roof construction. During the entire construction process of the nuclear power plant, three climbs are required. To be reusable in the same site, the temporary roof must be removable. At the same time, the top cover may encounter a 17-level typhoon, and the huge uplift force generated by the typhoon must be resisted by the uplift support of the top cover and the containment. Extrusion bolts are the key force transmission members in the anti-pull support. The anti-pull support is screwed into the extruded bolt supported by the vertical steel plate, so that the force transmission member and the containment are squeezed, thereby generating static friction to provide pull resistance. The extruded bolt in the antipull support is similar to the traditional clamping bolt. The bolt force is related to the relative roughness of each contact surface, bolt diameter, and bolt structure, but there is no relevant theory to determine the relationship between the tightening torque and the squeezing force of the bolt in the process of force transmission.
Given the above problems, this paper researched the force transmission of squeeze bolts. First, according to the different roughness of different force transmission members and contact surfaces, the friction block contact test, sleeve-friction block contact test, and flathead bolt contact test were designed to verify the necessity of setting friction block and the sleeve, and the improved method of spherical end bolt was proposed. Then, by adopting fixed torque electric wrench for staged loading, a method of directly establishing the relationship between electric wrench gear and bolt pressing force was obtained. Finally, based on the two sets of test results of the friction block and the sleeve being completely restrained and the spherical end bolts in direct contact with the containment, a method to improve the bolt force transmission was further proposed, and the dynamic friction coefficient between the friction block and the containment was obtained indirectly.
The following conclusions could be drawn. 1) The arrangement of friction block and sleeve minimized the damage of the anti-pull bearing to the containment during installation and use. When designing the bolt force transmission member, the spherical end bolt needed to be designed as the ellipsoid which was in approximate point contact with the socket groove and did not need to consider the influence of the thickness of the threaded hole on the force transmission of the bolt. 2) The directly established relationship between the gear position of the electric torque wrench and the extrusion force was useful for the engineering application of the electric torque wrench. 3) The obtained dynamic friction coefficient between the friction block and the simulated containment could provide a reference for the determination of the anti-pull resistance of the anti-pull bearing.-
Key words:
- anti-pull support /
- extrusion bolt /
- bolt squeeze force /
- bolt torque /
- friction block
-
[1] 唐特, 郑明光. AP/CAP建安专用顶盖模块设计[J]. 结构工程师, 2017,33(6):1-7. [2] 孙瑶. 模块化施工在核电站工程建设期的应用研究[D]. 长春:吉林大学, 2018. [3] 许跃武, 高宝宁. AP1000安全壳临时顶盖应用分析[C]//中国电机工程学会先进核电站技术研讨会论文集. 宁波:2013. [4] 濮良贵, 纪名刚. 机械设计学习指南[M]. 北京:高等教育出版社, 2001. [5] 程强, 王毅, 冯益华. 高强度螺栓扭矩系数K测定方法[J]. 山东轻工业学院学报(自然科学版), 1997,11(4):43-45. [6] 郑兴, 应道宴, 蔡暖姝. 几种常用螺栓螺母组合下的螺母系数K的测定[J]. 化工设备与管道, 2018,55(5):78-81. [7] 王朋, 陈安生, 张会武, 等. 螺栓扭矩系数影响因素的试验研究[J]. 实验力学, 2013,28(3):307-313. [8] 刘守智,王爱琴. 高强度大六角头螺栓连接副扭矩系数的复验[J]. 山西冶金, 1999(2):55-56. [9] 于翔, 陈绪宏, 杨章程. 高强度大六角头螺栓联接副的扭矩系数和抗滑移系数的测定方法[J]. 理化检验(物理分册), 2008(9):475-478. [10] 刘盛循, 张大平, 邓小伟,等. 六角端面六角头螺栓扭矩系数理论计算[J]. 大连理工大学学报, 2020,60(3):262-266.
点击查看大图
计量
- 文章访问数: 223
- HTML全文浏览量: 46
- PDF下载量: 22
- 被引次数: 0