Analysis of Mechanical Performance of Steel Frames Composed of Non-Compact Members
-
摘要: 为了分析强弱轴、梁柱截面宽厚比、高跨比、轴压比对柔性框架结构在低周往复荷载作用下初始刚度、承载力、变形能力的影响, 首先对一榀双层无轴压条件下的柔性钢框架进行拟静力试验研究, 以试验结果为依据, 在此基础上建立非线性有限元模型, 并对以下内容进行了研究: 1)轴压比为0.1、0.2、0.3、0.4时对结构的峰值位移、峰值荷载、初始刚度及变形能力的影响; 2)通过分别改变结构层高和跨度来改变高跨比, 研究结构受力性能变化; 3)通过分别改变腹板和翼缘宽厚来改变宽厚比, 研究其对结构受力性能的影响; 4)柱的强、弱轴对构件受力性能的影响。结果表明: 1)增大轴压比时, 承载力、变形能力和初始刚度均降低; 2)结构的承载能力、初始刚度与高跨比成反相关, 变形能力随着高跨比的增大而增大; 3)随宽厚比增大, 承载能力、初始刚度均增大; 4)强、弱轴方向的改变对结构整体性能的影响较大, 当钢柱从强轴方向变为弱轴方向时, 承载能力下降了40%, 初始刚度下降了65%。Abstract: To analyze the influence of the strength-weakness axis, the width-thickness ratio, the high span ratio, and the axial compression ratio on initial stiffness bearing capacity of flexible frame structure under low cyclic reciprocating load, the quasi-static test study of a single-span and double-layer steel frame was carried out, and the test results were obtained. Based on the test results, a nonlinear finite element model was established. The specific content: 1)Study the effect of the axial compression ratio of 0.1, 0.2, 0.3, 0.4 on the peak displacement, peak load, initial stiffness, and deformation capacity of the structure. 2)Study the structural performance, by changing the height of the structure layer and the span. 3)Study the effect of the width-to-thickness ratio to structural performance by changing the width-to-thickness ratio of the web and the flange. 4)Study the influence of the strength-weakness axis of the column on the members.Specific conclusions: 1)With the axial compression ratio increasing, the bearing capacity, deformation capacity, and initial stiffness were all reduced. 2)The bearing capacity, initial stiffness, and height-span ratio of the structure were inversely related, and the deformation capacity increased with the increase of the height-span ratio. 3)The width-to-thickness ratio increased the load-bearing capacity and the initial stiffness. 4)The change in the direction of the strong and weak axis had a greater impact on the overall performance of the structure. When the steel column changed from the strong axis to the weak axis, the bearing capacity decreased by 40%, the initial stiffness dropped by 65%.
-
Key words:
- flexible steel frames /
- seismic performance /
- finite element analysis
-
[1] 陈以一, 程欣, 贺修樟. 薄柔截面构件屈曲铰及钢框架破坏机构分析[J]. 建筑结构学报, 2014, 35(4): 109-115. [2] 王元清, 石永久, 陈宏. 现代轻型钢结构建筑及其在我国的应用[J]. 建筑结构学报, 2002, 23(1): 17-21. [3] 陈以一, 吴香香, 田海, 等. 空间足尺薄柔构件钢框架滞回性能试验研究[J]. 土木工程学报, 2006(5): 51-56. [4] 陈以一, 吴香香, 程欣. 薄柔构件钢框架的承载性能特点研究[J]. 工程力学, 2008, 25(1): 62-70. [5] Daali M L, Korol R M. Prediction of local buckling and rotation capacity at maximum moment[J]. Journal of Constructional Steel Research, 1995, 32(1): 1-13. [6] Blandford G E. Stability analysisi of flexibly connected thin-walled space frames[J]. Computers and Structures, 1994, 53(4): 839-847. [7] Kim S E, Kang K W. Large-scale testing of 3-D steel frame accounting for local buckling[J]. International Journal of Solids and Structures, 2004, 41: 5004-5022. [8] 陈鹏程. 薄柔H型钢构件抗恻向冲击性能研究[D]. 太原: 太原理工大学, 2019. [9] 孙立建, 郭宏超, 刘云贺, 等. 外挂再生混凝土墙板钢框架结构抗震性能有限元分析[J]. 地震工程与工程振动, 2017, 37(4): 67-76. [10] 王天稳. 土木工程结构试验[M]. 武汉: 武汉大学出版社, 2014.
点击查看大图
计量
- 文章访问数: 380
- HTML全文浏览量: 102
- PDF下载量: 43
- 被引次数: 0