New Development of High Strength Bolt Connections in Steel Structures
-
摘要: 高强度螺栓连接是钢结构现场连接的主要方式之一,在工程中广泛应用。随着科技的进步,高强度螺栓连接技术不断发展,高强度螺栓的新品种、新技术、新工艺、新设备不断涌现。对高强度螺栓连接技术新进展进行调查研究、总结概括,可以为高强度螺栓标准规范的修订提供参考,为设计、施工提供更多选择。高强度螺栓新品种主要包括12.9级及以上高强度螺栓、单向螺栓和环槽铆钉螺栓。目前国内对12.9级及以上高强度螺栓、单向螺栓和环槽铆钉螺栓进行了一定研究和工程示范,由于缺乏相关的标准规范支持,制约了其工程应用。针对高强度螺栓的新工艺调研了高强度螺栓预拉力指示器和防腐蚀技术,从这两种工艺的特点出发,对比分析了国内外学者的相关研究成果。新式预拉力指示器避免了传统预拉力指示器的人为施工误差,能够提高高强度螺栓预紧力施工的精确度;高强度螺栓镀锌防腐技术可以有效减缓螺栓腐蚀,减少后期维护保养。
国内外对于高强度螺栓连接设计方法存在差异,将国内外的标准规范进行比较,能够为现有规范的修订提供参考。国内外规范中关于螺栓撬力计算方法、最小螺栓预拉力、摩擦型高强度螺栓和承压型高强度螺栓的承载力计算方法的对比表明:1)中国规范中螺栓撬力的计算结果较为保守。2)中国规范中高强度螺栓预拉力规定值比美国规范规定值平均约小15%,比欧洲规范规定值平均约小10%。3)各国规范关于摩擦型高强度螺栓的抗剪承载力的计算式基本一致,但对于接触面处理方法的定义及对应的抗滑移系数的规定则各不相同。4)对于承压型高强度螺栓的孔壁承压强度,按照美国规范计算得到的承压强度最大,欧洲规范次之,中国规范最为保守;对于承压型高强度螺栓的抗拉和抗剪强度,按照欧洲规范计算得到的设计值最大,美国规范次之,中国规范最小。总体上,中国规范较国外规范保守。Abstract: As an effective structural connection between steel components, high strength bolt connection has been widely used in the construction filed nowadays. With the development of high strength bolt connection technology, new objects have shown up including new types of bolt, new technology, new equipment and so on. Investigation and conclusion of these new technologies have been conducted, which can provide the technical reference to the revision of the related specificitions as well as providing more choices for design and construction. The new types of high strength bolt consist of 12.9 and upper grade high strength bolt, blind bolt and ring groove rivet. Nowadays, there are research work and engineering practices of these new bolts in China, but engineering applications develop poor due to the absence of related specificitions. Investigation of new high strength bolt technology is mainly about bolt pretension indicator and bolt corrosion protection. Referring to their characteristics, comparison of these two technologies have been conducted among the research work worldwide. The new pretension indicator can eliminate the human error caused by using the traditional one, and therefore it can improve the accuracy of constructing bolt pretension. High strength bolt corrosion protection can effectively retard bolt corrosion, and therefore reduce the maintenance.
There are differences between domestic and foreign specificitions and comparison among these specificitions can provide references to the revision of current ones. Comparisons of calculation of bolt prying force and bolt pretension force as well as bearing capacity of friction-type and bearing-type high strength bolt connection among different specificitions have been conducted and show that: 1) Calculation results of bolt frying force from Chinese specificitions are more conservative. 2) The required bolt-pretension force in Chinese code is 15% smaller than that of American code and 10% smaller than that of European code. 3) The shear resistance formulas among different specificitions are consistent but the definition of contact surface and mean slip coefficient are different. 4) Bearing strength of bearing-type high strength bolt connection calculated from American code is the highest one and the higher one is from European code while the poorest one is from Chinese code. For tension strength and shear resistance, European code provides the highest values and European code shows the higher values while Chinese code provides with the poorest values. In general, Chinese code is conservative than foreign codes.-
Key words:
- high strength bolt /
- high strength bolt connection /
- design rules /
- specifications /
- new progress
-
林文玉,王小平. 高温下高强度螺栓受力性能研究现状综述[J]. 国外建材科技, 2006, 27(5):39-41. 赵志鹏, 武千翔, 梁黄彬. 高强度摩擦型螺栓连接性能研究综述[J]. 机械管理开发, 2016(6):113-114. 文双玲, 田珊, 侯兆欣. 《钢结构高强度螺栓连接技术规程》修订内容简述[J]. 建筑结构, 2014, 44(7):89-93. AISC. Specification for structural steel buildings:AISC 360-10[S]. Chicago:American Institute of Steel Construction, 2010. BSI. Structural use of steelwork in buildings, part 1:code of practice for design:rolled and welded sections:BS 5950-1:2000[S]. London:British Standerd Institution, 2011. CEN. Design of steel structures. part 1-8:design of joints:EN 1993-1-8:2005[S]. Brussels:European Committee for Standardization, 2009. 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社, 2018. 中华人民共和国住房和城乡建设部. 钢结构高强度螺栓连接技术规程:JGJ 82-2011[S]. 北京:中国建筑工业出版社, 2011. 李志刚, 李晓东, 马鸣图, 等. 14.9、12.9级高强度螺栓延迟断裂性能的研究[J]. 材料导报, 2004, 18(8):184-186. 邱林波, 刘毅, 侯兆新, 等. 高强结构钢在建筑中的应用研究现状[J]. 工业建筑, 2014, 44(3):1-5. 惠卫军, 董瀚, 王毛球. 耐延迟断裂性能优良的高强度螺栓钢[J]. 机械工程材料, 2001, 25(3):28-32. 惠卫军, 董瀚, 翁宇庆. 高强度螺栓钢的合金设计和性能[J]. 钢铁研究学报, 2003, 15(2):30-33. 惠卫军, 董瀚, 王毛球. 1300 MPa级高强度螺栓[J]. 钢铁, 2002, 37(3):37-42. 蔡璐, 赵秀明, 朱金华. 1300 MPa级高强度螺栓的研制[J]. 机械工程材料, 2003, 27(6):21-24. 赵秀明, 蔡璐, 朱金华. 1300 MPa级高强度螺栓开发[J]. 特殊钢, 2002, 23(增刊1):78-80. 赵秀明, 蔡璐, 朱金华. 1300 MPa级高强度螺栓开发及其力学性能研究[J]. 模型汽车技术, 2003(11):10-13. 卢海波, 蔡珣, 熊云奇. 14.9级螺栓研制及在汽车发动机上的应用[J]. 上海交通大学学报, 2005, 39(7):1105-1108. Ana M Girao Coelho, Frans S K Bijlarrd. Experimental behaviour of high strength connection[J]. Journal of Constructional Steel Research, 2007, 63:1229-1240. Ana M Girao Coelho, Frans S K Bijlarrd. High strength steel in buildings and civil engineering structures:design of connections[J]. Advances in Structural Engineering, 2010, 13(3):1229-1240. Primož Može, Darko Beg. Investigation of high strength steel connections with several bolts in double shear[J]. Journal of Constructional Steel Research, 2010, 67:333-347. Chakherlou T N, Mirzajanzadeh M, Vogwell J. Effect of hole lubrication on the fatigue life of double shear lap joints:an experimental and numerical study[J]. Engineering Failure Analysis, 2009, 17:2388-2399. Chakherlou T N, Mirzajanzadeh M, Vogwell J. Experimental and numerical investigations into the effect of and interference fit on the fatigue life of double shear lap joints[J]. Engineering Failure Analysis, 2009, 16(7):2066-2080. CEN. Mechanical properties of fasteners made of carbon steel and alloy steel-part 1:Bolts, screws and studs with specified property classes-coarse thread and fine pitch thread:ISO 898.1-2009[S]. Brussels:European Committee for Standardization, 2009. 中华人民共和国机械工业部. 工程机械高强度螺栓主要检查项目及检测方法:JB/T 7150-1993[S]. 北京:机械工业出版社, 1993. 郭庆生, 张元春. 高强度螺栓大型钢结构连接节点施工技术[J]. 山西建筑, 2011, 37(32):79-80. 李国强, 张杰华, 蒋蕴涵, 等. 钢结构用国产自锁式8.8级单向螺栓承载性能[J]. 建筑科学与工程学报, 2018, 35(1):9-16. 李国强, 张杰华. 钢结构用自锁式单向螺栓抗拉刚度分析模型[J]. 建筑科学与工程学报, 2018, 35(2):1-7. 许炎彬, 李国强, 张龙. 单边紧固螺栓:201210435247.7[P]. 2014-01-15. 范圣刚, 索雅琪, 刘飞, 等. 新型单面自紧螺栓成型机理与抗剪承载力试验研究[J]. 建筑结构学报. DOI: 10.14006/j.jzjgxb.2019.0656. 刘康, 李国强, 陆烨, 等. 注脂单向螺栓:201320115566.X[P]. 2013-10-23. 陈珂璠, 李宇晗, 陆金钰. 单边紧固螺栓在结构工程中应用的研究进展[J]. 江苏建筑, 2016(1):27-30. 王燕, 郏书朔, 柴文娟. 单边高强螺栓T型件连接节点试验研究及数值模拟[J]. 天津大学学报(自然科学与工程技术版),2018, 51(增刊):78-85. 王静峰, 曹墨研, 王成刚, 等. 圆钢管混凝土柱高强单向螺栓T形件初始刚度计算方法[J]. 建筑钢结构进展, 2020, 22(2):69-75. 王静峰, 潘学蓓, 彭啸, 等. 两层钢管混凝土柱与组合梁单向螺栓端板连接框架拟动力试验研究[J]. 土木工程学报, 2016, 49(10):32-40. 王培军, 乌兰托亚, 朱绪林. 单向螺栓T型节点火灾高温下抗拉性能[J]. 防灾减灾工程学报, 2018, 38(3):425-431. 张天雄,王元清,陈志华,等. 高强度不锈钢短尾环槽铆钉力学性能试验研究[C]//第29届全国结构工程学术会议论文集.武汉:2020. 张向峰,秦楠,王永岩. Huck铆钉铆接件拉伸性能的试验研究[J]. 机械强度, 2018, 40(1):73-76. 王永岩,张向峰,闫蕾蕾,等. 机车车辆Huck铆钉铆接件疲劳试验分析[J]. 石家庄铁道大学学报(自然科学版), 2017, 30(2):63-67. 王利,代英男,康铭,等. 环槽铆钉套环对连接强度影响研究[J]. 热处理技术与装备, 2019, 40(6):27-30. 张钦,张鹏,贾云龙,等. 基于Deform数值模拟的环槽铆钉试验研究[J]. 锻压装备与制造技术, 2020, 55(3):130-134. 邓华,陈伟刚,白光波,等. 铝合金板件环槽铆钉搭接连接受剪性能试验研究[J]. 建筑结构学报, 2016, 37(1):143-149. 陈伟刚. 平板型铝合金格栅结构板式节点的受力性能研究[D]. 杭州:浙江大学, 2015. Wang Z, Wang Y, Zhang Y, et al. Experimental investigation and design of extruded aluminium alloy T-stubs connected by swage-locking pins[J]. Engineering Structures, 2019, 200.DOI: 10.1016/j.engstruct.2019.109675. Wang Z, Wang Y, Zhang Y, et al. Experimental investigation on the behaviour of aluminium alloy beam-to-column joints connected by swage-locking pins[J]. Engineering Structures, 2020, 213.DOI: 10.1016/j.engstruct.2020.110578. 王元清,张颖,张俊光,等. 铝合金箱形-工字形盘式节点整体变形性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(5):527-534. 陈纪平, 贺贤娟. 高强度螺栓施工紧固轴力的自动控制[J]. 工业建筑, 2015,45(9):131-135. 陈纪平, 陈天予. 自动控制垫圈:201320888851.5[P]. 2015-01-14. 易桂虎, 孔琦, 季文翔, 等. 推荐一种螺栓防腐的做法[J]. 涂层与防护, 2019,40(11):7-9. Kania H, Sipa J. Microstructure characterization and corrosion resistance of zinc coating obtained on high-strength grade 10.9 bolts using a new thermal diffusion process[J]. Materials, 2019, 12(9):1400-1411. 应付钊. 镀锌高强度螺栓的工程应用[J]. 钢结构, 2010, 25(2):57-60. 程大勇, 金玲, 曲艺. 转角法施工镀锌高强度螺栓关键技术[J]. 建筑施工, 2015(3):353-355. 何海荣. 国内外设计规范对螺栓连接计算相关规定的比较[J]. 四川建筑科学研究, 2013, 39(3):42-43. 王敬烨, 张海军, 刘文武. 中欧钢结构规范螺栓连接承载力比较[J]. 钢结构, 2013, 28(2):50-58. 白睿, 郝际平, 田黎敏, 等. 螺栓撬力修正计算方法[J]. 建筑结构, 2013, 43(9):88-91. 戎伟. 梁柱节点端板撬力作用机理及计算方法研究[D]. 杭州:浙江工业大学, 2005. 中国工程建设标准化协会. 门式刚架轻型房屋钢结构技术规程:CECS 102:2002[S]. 北京:中国计划出版社, 2003. AISC. Load and resistance factor design specification for steel structural steel building[M]. Chicago:American Institute of Steel Construction, 1999. BSI. Steel, concrete and composite bridges-part 1:general statement:BS 5400-1:1988[S]. London:British Standard Institution, 1988. 黄尧堃. 中美欧钢结构规范高强度螺栓承载力比较[J]. 工业建筑, 2014, 44(增刊):1099-1107. 潘斌, 石永久, 王元清, 等. 各国规范高强度螺栓抗剪连接设计方法比较分析[J]. 建筑科学, 2012, 28(9):93-97. Council of Standards Australia. Steel structures:AS 4100-1998[S]. Sydney:Council of Standards Australia, 1988. ISO/TC167/SCI. Steel Structures, materials and design[R]. Geneva:International Organization for Standardization, 1992.
点击查看大图
计量
- 文章访问数: 959
- HTML全文浏览量: 161
- PDF下载量: 105
- 被引次数: 0